Computational Notebooks

T U D

JNIVERSITÄT DARMSTADT

30.06.2020

SE4ALipynb ×				
	Python 3	С		
Software Engineering for AI Seminar		Î		
Computational Notebooks				
[3]: print(f'presented by {authors[0]}, and {authors[1]}')				
presented by Gloria Doci, and Jonas Stadtmüller				
[]:				
		-		
Mode: Command 🛞 Ln 1	, Col 51 SE4AI.ipyn	ıb		

Outline

- Motivation
- Strong points
- Pain points & messiness
- Existing approaches and solutions
- Conclusion & Outlook

Motivation

- Big data explosion
- Advancements in computing hardware(GPU, TPU)
- Advancements in ML

Gain insights over data for better decision making, innovations and improvements

Foundation of Notebooks

- Data science is open-ended, highly interactive, exploratory and iterative
- Wide range of contexts and audiences \rightarrow narrative is central [1]
- Literate programming paradigm (1984) by Donald Knuth [2] combines code snippets and macros to make the program more understandable to humans (WEB = Pascal + TeX)
- Computational notebooks are tools for interactive and exploratory computing to support scientific computing and data science

Computational Notebooks

- Traditionally used in labs to document research computations and findings
- Computational notebooks make possible to include code, data analysis and visualizations into a single document

 Focus today is on open access and reproducibility of data analyses

Computational Notebooks

- The code executes in a kernel, but the interface is easy to use
- In data science mostly used for visualization, statistical analysis, classical ML and DNN [3]

Example using matplotlib

Popularity of Notebooks

- Survey on public public Jupyter notebooks on Github [3]
- Notebooks gain more popularity
- More people are using notebooks

Strong Points

- Advantages of notebooks, that are essential for a data scientist
 - Support for data exploration and visualization
 - Fast for prototyping
 - Easy-to-use also for non-programmers (besides hidden state)
 - Supplementary text cells help with collaboration
- -> Notebooks are suitable tool for data scientists to write and refine code in order to understand unfamiliar data, test hypotheses and build models to solve ill-defined problems
- However, their flexibility does come with a cost...

Example: Code with Explanation

▶ Mi ≣+B	
import matplo %matplotlib in import keras	b.pyplot as plt ne
We perform a r It consists of As a regressor	ression on the boston housing dataset. We want to predict the median house price. 3 numeric and categorical features, like for example property tax, mean rooms per dwelling and a town's crime rate. 2 use a simple MLP with 2 hidden layers. As an optimizer we choose Adam (Kingma, Ba, 2014) and used the Mean Squared Error as our loss function
▶ M↓ 8+8	
(x_train, y_t	n), (x_test, y_test) = keras.datasets.boston_housing.load_data(path='b_housing', test_split=0.1)
<pre>model = keras model.add(ker model.compile model.fit(x=x hist = model. plt.plot(hist plt.plot(hist plt.legend()</pre>	<pre>quential([keras.layers.Dense(10, activation='relu')]) layers.Dense(5, activation='relu')) timizer='adam', loss-'mse') ain, y-y_train, batch_size=32, epochs=15, verbose=0, validation_split=0.2) tory.history al_loss'], label='validation loss') oss'], label='training loss')</pre>
(matplotlib.le	id.Legend at 0x1c4140ade88>
2000 -	

- Initial Text cell describes dataset and it's features
- Description of employed ML-model and architecture
- Reference theoretical paper on optimizer
- Inline plotting enables easy inspection of learning curve

Question

From those of you who have used computational notebooks, what didn't you like about them or while using them?

Pain Points

- Study on general hardships in notebooks:
 - Setup and Reliability
 - Loading data is tedious
 - Limited processing power inhibits scalability
 - Exploratory nature leads to messy code [Disorder, Deletion, Dispersal]
 - Cells are copied for different hyperparameters
 - Out-of-order execution can create hidden states
 - Data security
 - Access management lacks granularity

Example: Out of order Execution

[33]	M1 8→8
	import numpy as np
[42]	► M1 8-8
	<pre>w = np.random.normal(scale=2., size=(5, 1)) # See if double std changes result # This is just for testing. Remove later.</pre>
[35]	M1 8→8
	<pre>w = np.random.normal(size=(5, 1))</pre>
[43]	► ML 8+8
	x = np.random.uniform(size=(3, 5)) print(x @ w)
	[[0.19564825] [-0.18246406] [1.36893631]]

- Second block has been executed for a quick check
- Kernel still holds in w the value with std = 2

Difficult Tasks

- Survey on critical activities in notebooks:
 - Deploy in production
 - Data science languages differ from production environment
 - DevOps usually not a data scientists expertise
 - Explore version history
 - Out of order cell execution may aggravate reproducibility
 - Long running tasks
 - Computation inhibits interactivity
 - Missing coding assistance
 - autocompletion, refactoring tools often deficient, live templates

Why not use IDEs instead of Notebooks?

- Why not use well-established and modern IDEs (Integrated Development Environment) instead (e.g. Spyder, PyCharm)?
 - Auto-completion
 - Help with method parameters
 - Go to definition
 - Syntax highlighting
 - Code Refactoring possibilities
 - Version control system supports
- But main activity/goal is to develop generally useful and reusable products
 - -> Not exactly what the goal of data scientists is
 - -> So the way to go is to provide better support for notebooks, and not to replace them

Possible Solutions: Extensions

- To better work with notebooks extensions have been proposed that solve certain problems
- Nbgather [11]:
 - Logs every cell execution to enable:
 - Version history for every cell
 - Code gathering: for a chosen output, find minimal cells needed to produce it

30.06.20 | FB Informatik | Reactive Programming & STG | G. Doci, J.Stadtmüller | 16

Extensions II

- Commuter:
 - Provides notebook storage and access control
- Papermill:
 - Parameterizes notebooks to allow running different versions of the notebook
 - Saves the results to an output notebook, with the specific parameters used
- Further nteract Libraries:
 - Scrapbook: Save results of notebook drafts
 - Bookstore: Enables versioning and storage

Conclusion & Outlook

Computational Notebooks

- dual heritage in software and science
- Trade-off/need for balance between exploration and software engineering
- Notebooks are a popular and inherent tool in Data Science
- Vital part in development of Machine Learning Applications
- Shortcomings of notebooks make the effective use challenging
- People in Data Science need to employ the right workflows and extensions to use notebooks as powerful tools for developing machine learning products
- In a relatively early stage and can be further leveraged and improved

References

[1] https://blog.jupyter.org/project-jupyter-computational-narratives-as-the-engine-of-collaborative-data-science-2b5fb94c3c58 (Retrieved 06.2020)

[2] http://www.literateprogramming.com/knuthweb.pdf

[3] Psallidas et al. Data Science Through The Looking Glass And What We Found There [https://arxiv.org/pdf/1912.09536.pdf]

[4] Chattopadhyay et al. What's Wrong With Computational Notebooks? Pain Points, Needs and Design Opportunities [https://web.eecs.utk.edu/~azh/pubs/Chattopadhyay2020CHI_NotebookPainpoints.pdf]

[5] https://yihui.org/en/2018/09/notebook-war/

- [6] https://www.neilernst.net/matrix-blog.html
- [7] https://ljvmiranda921.github.io/notebook/2020/03/16/jupyter-notebooks-in-2020-part-2/
- [8] https://jupyter4edu.github.io/jupyter-edu-book/jupyter.html
- [9] https://netflixtechblog.com/notebook-innovation-591ee3221233 Notebook infrastructure

[10] https://dl.acm.org/doi/pdf/10.1145/3173574.3173606

[11] Head et al. Managing Messes in Computational Notebooks [https://dl.acm.org/doi/pdf/10.1145/3290605.3300500]

Tools: nbgather

Other Tools: From nteract

https://github.com/nteract

Acknowledgments & License

- Material Design Icons, by Google under Apache-2.0
- Other images are either by the authors of these slides, attributed where they are used, or licensed under Pixabay or Pexels
- These slides are made available by the authors (Gloria Doci, Jonas Stadtmüller) under CC BY 4.0

Extras

https://github.com/jupyter/design/wiki/Jupyter-Logo#where-does-the-jupyter-name-come-from Jupyter naming reasons:

- Planet jupiter = science
- Core supported languages Julia, Python, R
- Galileo was the first to discover the moons of jupiter. He included the underlying data in the publication. -> leads to reproducibility in science, which is one of the focuses of Jupyter project

