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Motivation

● Big data explosion
● Advancements in computing hardware(GPU, TPU)
● Advancements in ML

Gain insights over data for 
better decision making,   
innovations and 
improvements

DATA
 S

CIE
NCE
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Foundation of Notebooks

● Data science is open-ended, highly interactive, 
exploratory and iterative

● Wide range of contexts and audiences → narrative is 
central [1]

● Literate programming paradigm (1984) by Donald 
Knuth [2] combines code snippets and macros to make 
the program more understandable to humans (WEB = 
Pascal + TeX)

● Computational notebooks are tools for interactive and 
exploratory computing to support scientific computing 
and data science
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Computational Notebooks

● Traditionally used in labs to document research computations and 
findings

● Computational notebooks make possible to include code, data 
analysis and visualizations into a single document

● Focus today is on open access and reproducibility of data 
analyses

Mathematica
1988
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Computational Notebooks

● The code executes in a kernel, but the interface is easy to use
● In data science mostly used for visualization, statistical analysis, 

classical ML and DNN [3]

}
}

input 
cells

output 
cells

Can be interleaved
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Popularity of Notebooks

● Survey on public public Jupyter notebooks on Github 
[3]

● Notebooks gain more popularity
● More people are using notebooks
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Strong Points

● Advantages of notebooks, that are essential for a data scientist
– Support for data exploration and visualization
– Fast for prototyping
– Easy-to-use also for non-programmers (besides hidden 

state)
– Supplementary text cells help with collaboration

● -> Notebooks are suitable tool for data scientists to write and 
refine code in order to understand unfamiliar data, test 
hypotheses and build models to solve ill-defined problems

● However, their flexibility does come with a cost...



30.06.20  |  FB Informatik  |  Reactive Programming & STG  |  G. Doci, J.Stadtmüller |  9

Example: Code with Explanation

● Initial Text cell describes 
dataset and it’s features

● Description of employed 
ML-model and 
architecture

● Reference theoretical 
paper on optimizer

● Inline plotting enables 
easy inspection of 
learning curve
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Question

From those of you who have used computational 
notebooks, what didn‘t you like about them or while 
using them? 
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Pain Points

● Study on general hardships in notebooks:
– Setup and Reliability

● Loading data is tedious
● Limited processing power inhibits scalability

– Exploratory nature leads to messy code [Disorder, 
Deletion, Dispersal]

● Cells are copied for different hyperparameters
● Out-of-order execution can create hidden states

– Data security
● Access management lacks granularity
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Example: Out of order Execution

● Second block has been 
executed for a quick 
check

● Kernel still holds in w 
the value with std = 2
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Difficult Tasks

● Survey on critical activities in notebooks:
– Deploy in production

● Data science languages differ from production environment
● DevOps usually not a data scientists expertise

– Explore version history
● Out of order cell execution may aggravate reproducibility
● Long running tasks
● Computation inhibits interactivity

– Missing coding assistance
● autocompletion, refactoring tools often deficient, live 

templates
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Why not use IDEs instead of Notebooks?

● Why not use well-established and modern IDEs (Integrated Development 
Environment) instead (e.g. Spyder, PyCharm)?
– Auto-completion
– Help with method parameters
– Go to definition
– Syntax highlighting
– Code Refactoring possibilities
– Version control system supports

● But main activity/goal is to develop generally useful and reusable products
-> Not exactly what the goal of data scientists is
-> So the way to go is to provide better support for notebooks, and not to 
replace them
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Possible Solutions: Extensions

● To better work with notebooks extensions have 
been proposed that solve certain problems

● Nbgather [11]:
– Logs every cell execution to enable:

● Version history for every cell
● Code gathering: for a chosen output, find 

minimal cells needed to produce it
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Extensions II

● Commuter:
– Provides notebook storage and access control

● Papermill:
– Parameterizes notebooks to allow running different 

versions of the notebook
– Saves the results to an output notebook, with the 

specific parameters used
● Further nteract Libraries:

– Scrapbook: Save results of notebook drafts 
– Bookstore: Enables versioning and storage
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Conclusion & Outlook

● Computational Notebooks
– dual heritage in software and science
– Trade-off/need for balance between exploration and software 

engineering
● Notebooks are a popular and inherent tool in Data Science
● Vital part in development of Machine Learning Applications
● Shortcomings of notebooks make the effective use challenging
● People in Data Science need to employ the right workflows and 

extensions to use notebooks as powerful tools for developing 
machine learning products

● In a relatively early stage and can be further leveraged and improved
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Tools: nbgather
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Other Tools: From nteract

https://github.com/nteract

https://github.com/nteract
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Extras

https://github.com/jupyter/design/wiki/Jupyter-
Logo#where-does-the-jupyter-name-come-from
Jupyter naming reasons:
● Planet jupiter = science
● Core supported languages Julia, Python, R
● Galileo was the first to discover the moons of jupiter.  

He included the underlying data in the publication. -> 
leads to reproducibility in science, which is one of the 
focuses of Jupyter project
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