
30.06.20  |  FB Informatik  |  Reactive Programming & STG  |  G. Doci, J.Stadtmüller |  1

30.06.2020

Computational Notebooks



30.06.20  |  FB Informatik  |  Reactive Programming & STG  |  G. Doci, J.Stadtmüller |  2

Outline

● Motivation
● Strong points
● Pain points & messiness
● Existing approaches and solutions
● Conclusion & Outlook



30.06.20  |  FB Informatik  |  Reactive Programming & STG  |  G. Doci, J.Stadtmüller |  3

Motivation

● Big data explosion
● Advancements in computing hardware(GPU, TPU)
● Advancements in ML

Gain insights over data for 
better decision making,   
innovations and 
improvements

DATA
 S

CIE
NCE



30.06.20  |  FB Informatik  |  Reactive Programming & STG  |  G. Doci, J.Stadtmüller |  4

Foundation of Notebooks

● Data science is open-ended, highly interactive, 
exploratory and iterative

● Wide range of contexts and audiences → narrative is 
central [1]

● Literate programming paradigm (1984) by Donald 
Knuth [2] combines code snippets and macros to make 
the program more understandable to humans (WEB = 
Pascal + TeX)

● Computational notebooks are tools for interactive and 
exploratory computing to support scientific computing 
and data science



30.06.20  |  FB Informatik  |  Reactive Programming & STG  |  G. Doci, J.Stadtmüller |  5

Computational Notebooks

● Traditionally used in labs to document research computations and 
findings

● Computational notebooks make possible to include code, data 
analysis and visualizations into a single document

● Focus today is on open access and reproducibility of data 
analyses

Mathematica
1988



30.06.20  |  FB Informatik  |  Reactive Programming & STG  |  G. Doci, J.Stadtmüller |  6

Computational Notebooks

● The code executes in a kernel, but the interface is easy to use
● In data science mostly used for visualization, statistical analysis, 

classical ML and DNN [3]

}
}

input 
cells

output 
cells

Can be interleaved



30.06.20  |  FB Informatik  |  Reactive Programming & STG  |  G. Doci, J.Stadtmüller |  7

Popularity of Notebooks

● Survey on public public Jupyter notebooks on Github 
[3]

● Notebooks gain more popularity
● More people are using notebooks



30.06.20  |  FB Informatik  |  Reactive Programming & STG  |  G. Doci, J.Stadtmüller |  8

Strong Points

● Advantages of notebooks, that are essential for a data scientist
– Support for data exploration and visualization
– Fast for prototyping
– Easy-to-use also for non-programmers (besides hidden 

state)
– Supplementary text cells help with collaboration

● -> Notebooks are suitable tool for data scientists to write and 
refine code in order to understand unfamiliar data, test 
hypotheses and build models to solve ill-defined problems

● However, their flexibility does come with a cost...



30.06.20  |  FB Informatik  |  Reactive Programming & STG  |  G. Doci, J.Stadtmüller |  9

Example: Code with Explanation

● Initial Text cell describes 
dataset and it’s features

● Description of employed 
ML-model and 
architecture

● Reference theoretical 
paper on optimizer

● Inline plotting enables 
easy inspection of 
learning curve



30.06.20  |  FB Informatik  |  Reactive Programming & STG  |  G. Doci, J.Stadtmüller |  10

Question

From those of you who have used computational 
notebooks, what didn‘t you like about them or while 
using them? 



30.06.20  |  FB Informatik  |  Reactive Programming & STG  |  G. Doci, J.Stadtmüller |  11

Pain Points

● Study on general hardships in notebooks:
– Setup and Reliability

● Loading data is tedious
● Limited processing power inhibits scalability

– Exploratory nature leads to messy code [Disorder, 
Deletion, Dispersal]

● Cells are copied for different hyperparameters
● Out-of-order execution can create hidden states

– Data security
● Access management lacks granularity



30.06.20  |  FB Informatik  |  Reactive Programming & STG  |  G. Doci, J.Stadtmüller |  12

Example: Out of order Execution

● Second block has been 
executed for a quick 
check

● Kernel still holds in w 
the value with std = 2



30.06.20  |  FB Informatik  |  Reactive Programming & STG  |  G. Doci, J.Stadtmüller |  13

Difficult Tasks

● Survey on critical activities in notebooks:
– Deploy in production

● Data science languages differ from production environment
● DevOps usually not a data scientists expertise

– Explore version history
● Out of order cell execution may aggravate reproducibility
● Long running tasks
● Computation inhibits interactivity

– Missing coding assistance
● autocompletion, refactoring tools often deficient, live 

templates



30.06.20  |  FB Informatik  |  Reactive Programming & STG  |  G. Doci, J.Stadtmüller |  14

Why not use IDEs instead of Notebooks?

● Why not use well-established and modern IDEs (Integrated Development 
Environment) instead (e.g. Spyder, PyCharm)?
– Auto-completion
– Help with method parameters
– Go to definition
– Syntax highlighting
– Code Refactoring possibilities
– Version control system supports

● But main activity/goal is to develop generally useful and reusable products
-> Not exactly what the goal of data scientists is
-> So the way to go is to provide better support for notebooks, and not to 
replace them



30.06.20  |  FB Informatik  |  Reactive Programming & STG  |  G. Doci, J.Stadtmüller |  15

Possible Solutions: Extensions

● To better work with notebooks extensions have 
been proposed that solve certain problems

● Nbgather [11]:
– Logs every cell execution to enable:

● Version history for every cell
● Code gathering: for a chosen output, find 

minimal cells needed to produce it



30.06.20  |  FB Informatik  |  Reactive Programming & STG  |  G. Doci, J.Stadtmüller |  16

Extensions II

● Commuter:
– Provides notebook storage and access control

● Papermill:
– Parameterizes notebooks to allow running different 

versions of the notebook
– Saves the results to an output notebook, with the 

specific parameters used
● Further nteract Libraries:

– Scrapbook: Save results of notebook drafts 
– Bookstore: Enables versioning and storage



30.06.20  |  FB Informatik  |  Reactive Programming & STG  |  G. Doci, J.Stadtmüller |  17

Conclusion & Outlook

● Computational Notebooks
– dual heritage in software and science
– Trade-off/need for balance between exploration and software 

engineering
● Notebooks are a popular and inherent tool in Data Science
● Vital part in development of Machine Learning Applications
● Shortcomings of notebooks make the effective use challenging
● People in Data Science need to employ the right workflows and 

extensions to use notebooks as powerful tools for developing 
machine learning products

● In a relatively early stage and can be further leveraged and improved



30.06.20  |  FB Informatik  |  Reactive Programming & STG  |  G. Doci, J.Stadtmüller |  18

References 

[1] https://blog.jupyter.org/project-jupyter-computational-narratives-as-the-engine-of-collaborative-data-science-
2b5fb94c3c58  (Retrieved 06.2020)

[2] http://www.literateprogramming.com/knuthweb.pdf

[3] Psallidas et al. Data Science Through The Looking Glass And What We Found There [
https://arxiv.org/pdf/1912.09536.pdf]

[4] Chattopadhyay et al. What‘s Wrong With Computational Notebooks? Pain Points, Needs and Design 
Opportunities [https://web.eecs.utk.edu/~azh/pubs/Chattopadhyay2020CHI_NotebookPainpoints.pdf]

[5] https://yihui.org/en/2018/09/notebook-war/

[6] https://www.neilernst.net/matrix-blog.html

[7] https://ljvmiranda921.github.io/notebook/2020/03/16/jupyter-notebooks-in-2020-part-2/

[8] https://jupyter4edu.github.io/jupyter-edu-book/jupyter.html

[9] https://netflixtechblog.com/notebook-innovation-591ee3221233 Notebook infrastructure

[10] https://dl.acm.org/doi/pdf/10.1145/3173574.3173606

[11] Head et al. Managing Messes in Computational Notebooks [
https://dl.acm.org/doi/pdf/10.1145/3290605.3300500]

http://www.literateprogramming.com/knuthweb.pdf
https://arxiv.org/pdf/1912.09536.pdf
https://web.eecs.utk.edu/~azh/pubs/Chattopadhyay2020CHI_NotebookPainpoints.pdf
https://yihui.org/en/2018/09/notebook-war/
https://www.neilernst.net/matrix-blog.html
https://dl.acm.org/doi/pdf/10.1145/3173574.3173606
https://dl.acm.org/doi/pdf/10.1145/3290605.3300500


30.06.20  |  FB Informatik  |  Reactive Programming & STG  |  G. Doci, J.Stadtmüller |  19

Tools: nbgather



30.06.20  |  FB Informatik  |  Reactive Programming & STG  |  G. Doci, J.Stadtmüller |  20

Other Tools: From nteract

https://github.com/nteract

https://github.com/nteract


30.06.20  |  FB Informatik  |  Reactive Programming & STG  |  G. Doci, J.Stadtmüller |  21

Acknowledgments & License

● Material Design Icons, by Google under 
Apache-2.0 

● Other images are either by the authors of these 
slides, attributed where they are used, or licensed 
under Pixabay or Pexels

● These slides are made available by the authors 
(Gloria Doci, Jonas Stadtmüller) under CC BY 4.0

https://www.apache.org/licenses/LICENSE-2.0.html
https://pixabay.com/de/service/license/
https://www.pexels.com/de-de/lizenz/
https://creativecommons.org/licenses/by/4.0/legalcode.de


30.06.20  |  FB Informatik  |  Reactive Programming & STG  |  G. Doci, J.Stadtmüller |  22

Extras

https://github.com/jupyter/design/wiki/Jupyter-
Logo#where-does-the-jupyter-name-come-from
Jupyter naming reasons:
● Planet jupiter = science
● Core supported languages Julia, Python, R
● Galileo was the first to discover the moons of jupiter.  

He included the underlying data in the publication. -> 
leads to reproducibility in science, which is one of the 
focuses of Jupyter project


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

