
25.06.2020 | FB 20 | Reactive Programming & Software Technology | 1

Debugging
Constantin Stipnieks & Florian Busch

Software Engineering for Artificial Intelligence

25.06.2020 | FB 20 | Reactive Programming & Software Technology | 2

Outline

● Introduction: Debugging in AI

● Debugging via State Differential Analysis

● Debugging via Decision Boundaries

● Model assertions

● Visualization Tools

● Summary

● References

25.06.2020 | FB 20 | Reactive Programming & Software Technology | 3

Debugging in AI [1]

Machine learning (ML) models are hardly ever without mistakes.

Mistakes can be very dangerous/costly:

● Financial risks
● Legal risks
● Ethical problems (biases)

 Debugging (non ML specific definition)
“to remove bugs (= mistakes) from a computer program” (Cambridge
Dictionary, accessed on 25.06.2020)

https://dictionary.cambridge.org/de/worterbuch/englisch/debug?q=debugging
https://dictionary.cambridge.org/de/worterbuch/englisch/debug?q=debugging

25.06.2020 | FB 20 | Reactive Programming & Software Technology | 4

Debugging in AI [1]
Failure models and model investigation

Failure models:

Many reasons, a model might not behave as intended, e.g. opaqueness,
social discrimination, security vulnerabilities, privacy harms, model decay

Model investigation:

Sensitivity analysis: inspect model behavior on unseen (constructed) data

Residual analysis: inspect model errors (numeric)

Benchmark models: compare to well established benchmark models

ML security audits: inspect security of your model

25.06.2020 | FB 20 | Reactive Programming & Software Technology | 5

Debugging in AI [1]
Improving your model (1/2)

Improving your model:
Data generation
● Create new data to avoid learning unwanted biases from the original

dataset (representative data distribution)

Interpretable models
● Use interpretable models if possible, make models explain their

predictions

Model editing
● In certain models, changes can be made by hand (e.g. decision trees)

25.06.2020 | FB 20 | Reactive Programming & Software Technology | 6

Debugging in AI [1]
Improving your model (2/2)

Model assertions
● Business rules put on top of model predictions

Discrimination remediation
● Take steps to ensure the system is not discriminatory

Model monitoring
● Monitor the models behavior, it will most likely change over time

Anomaly detection
● Inspect behavior of the model on strange input data and for strange

predictions (e.g. use constraints)

25.06.2020 | FB 20 | Reactive Programming & Software Technology | 7

Model Bugs in Neural Networks

There are two types of model bugs:

● Structural Bugs
○ e.g. number of hidden layers and neurons,

neuron connections
● Training Bugs

○ e.g. using biased training data, that does not
follow the real world data distribution

○ results in over- or underfitting
○ can only be fixed by using more training

samples that correct the bias

25.06.2020 | FB 20 | Reactive Programming & Software Technology | 8

Model Bugs in Neural Networks

There are two types of model bugs:

● Structural Bugs
○ e.g. number of hidden layers and neurons,

neuron connections
● Training Bugs

○ e.g. using biased training data, that does not
follow the real world data distribution

○ results in over- or underfitting
○ can only be fixed by using more training

samples that correct the bias

25.06.2020 | FB 20 | Reactive Programming & Software Technology | 9

Fixing Training Bugs

Main difficulties of fixing training bugs:

1. Reliably identify the problem in the existing training data
2. Find new samples that fix this problem

Previous approaches are rather agnostic to the first difficulty
and just input any new samples in the hope that it fixes the
problem

Before we delve into a solution for 1., let us consider were
new training data can come from

25.06.2020 | FB 20 | Reactive Programming & Software Technology | 10

Acquiring additional training data

In general there two main methods to get more training data

Extracting more data from the world

+ Likely to get good data
- Can be very time consuming

and expensive

Artificially generating data

“Best” approach: Generative Models
Approximate the real world data distribution

+ Able to efficiently generate as many new
samples as needed

- Getting a good generative model is hard

*1
*2

*1 Icon made by surang from www.flaticon.com *2 Icon made by Freepik from www.flaticon.com

Icons accessed 25.06.2020

http://www.flaticon.com/
http://www.flaticon.com/

25.06.2020 | FB 20 | Reactive Programming & Software Technology | 11

Debugging via State Differential Analysis [3]
Introduction

 The following is an overview of the method described in [“MODE:
automated neural network model debugging via state differential
analysis and input selection”, S Ma et al, 2018]

Goal:

● Identify the features responsible for a bug and fix that bug by training on
targeted samples

The method can be divided into two main steps:

1. Apply state differential analysis to identify the faulty features
2. Run an input selection algorithm to select samples with substantial

influence on the faulty features

25.06.2020 | FB 20 | Reactive Programming & Software Technology | 12

Debugging via State Differential Analysis [3]
Method: Layer Selection

If we have found an underfitting or overfitting bug, we will first
determine the layer where the accuracy takes a turn for the worse.

The features in this layer seem the most promising to investigate, as it
is the layer where the accuracy stops improving / decreases.

25.06.2020 | FB 20 | Reactive Programming & Software Technology | 13

Debugging via State Differential Analysis [3]
Method: Layer Selection

Our algorithm for identifying the target layer of an underfitting bug for labelｌconsists of the
following steps:

For each hidden layer L from input to output do:

1. Extract the sub-model of all layers up to L
2. Freeze the weights in the sub-model
3. Append a fully connected output layer to L

(with the same labels as in the original model)
4. Retrain this sub-model on the same training data
5. Compare the test result for labelｌwith that of the previous sub-model.

If they are very similar, the layer before L is the target layer.

25.06.2020 | FB 20 | Reactive Programming & Software Technology | 14

Debugging via State Differential Analysis [3]
Method: Feature Selection

Within the target layer we want to identify those features with the highest
importance for correctly/incorrectly classifying labelｌ.

For a specific input sample, the feature values in the target layer tell us the
importance of those features for the correct/incorrect classification of that sample.

Given all samples that are correctly/incorrectly classified, we average their feature
values and normalize them to [-1,1]. This yields us a heat map:

HC1 = HC2 = HC? =HM1 =

Values in (0,1] are red and denote that the presence of the feature is important

Values in [-1,0) are blue and denote that the absence of the feature is important

25.06.2020 | FB 20 | Reactive Programming & Software Technology | 15

Debugging via State Differential Analysis [3]
Method: Feature Selection

Now which features are important to fix an underfitting bug?

We want to emphasize the features that are unique toｌ.

To detect those features we calculate the differential heat map by subtracting

HC
ｌ
 with HCk for k ≠ｌ. For instance:

➖ ＝

We also want to suppress those features that our model thinks are good
indicators forｌbut in reality aren’t (Misclassification toｌ). To identify those features
we subtract HM

ｌ
 with HC

ｌ :

➖ ＝

25.06.2020 | FB 20 | Reactive Programming & Software Technology | 16

Debugging via State Differential Analysis [3]
Method: Choosing new samples

We can now select new data samples that match those heat maps. Doing so is
easy:

1. Run the sample through the model until it reaches the target layer
2. Compare the feature values of the sample with those in the heat map, e.g.

by taking the dot product
3. If the score is higher than a threshold, use the sample

However, we do not want to overfit on data that only matches the heat maps!

 Mix in some randomly selected samples as well.

25.06.2020 | FB 20 | Reactive Programming & Software Technology | 17

Debugging via Decision Boundaries [2]
Introduction

 The following is an overview of the basic ideas described in [“Auditing and
Debugging Deep Learning Models via Decision Boundaries: Individual-level
and Group-level Analysis”, Yousefzadeh, R., & O'Leary, D. P., 2020]

Goal

● Gain knowledge about a deep learning model through its decision boundary

Method

● Flip points (next slide)

Outputs

● Individual-level auditing: explanation report about a single instance
● Group-level auditing: information about feature importance and impact

(multiple instances)

25.06.2020 | FB 20 | Reactive Programming & Software Technology | 18

Debugging via Decision Boundaries [2]
Flip points

Positive class Negative classPredictions for two classes,
normalized to 1

Decision boundary
→ points here: flip points

Closest flip point x for x:

25.06.2020 | FB 20 | Reactive Programming & Software Technology | 19

Debugging via Decision Boundaries [2]
Flip points

Decision boundary
→ points here: flip points

Closest flip point x for x:

25.06.2020 | FB 20 | Reactive Programming & Software Technology | 20

Debugging via Decision Boundaries [2]
Flip points

Decision boundary
→ points here: flip points

Closest flip point x for x:

25.06.2020 | FB 20 | Reactive Programming & Software Technology | 21

Debugging via Decision Boundaries [2]
Flip points

Decision boundary
→ points here: flip points

Closest flip point x for x:

25.06.2020 | FB 20 | Reactive Programming & Software Technology | 22

Debugging via Decision Boundaries [2]
Flip points

Decision boundary
→ points here: flip points

Closest flip point x for x:

flip points

25.06.2020 | FB 20 | Reactive Programming & Software Technology | 23

Debugging via Decision Boundaries [2]
Flip points

Decision boundary
→ points here: flip points

Closest flip point x for x:

flip points Constrained flip points

25.06.2020 | FB 20 | Reactive Programming & Software Technology | 24

Debugging via Decision Boundaries [2]
Flip points

Decision boundary
→ points here: flip points

Closest flip point x for x:

flip points Constrained flip points

25.06.2020 | FB 20 | Reactive Programming & Software Technology | 25

Debugging via Decision Boundaries [2]
Flip points

Decision boundary
→ points here: flip points

Closest flip point x for x:

flip points Constrained flip points

NOT THAT EASY

25.06.2020 | FB 20 | Reactive Programming & Software Technology | 26

Debugging via Decision Boundaries [2]
Individual-level auditing

(Based on an example given in the paper)

Imagine a dataset which is about if a person should be given bail or not.

There are 4 features:

● Gender (“male” or “female”)
● Age (number)
● Employment status (“employed” or “unemployed”)
● Number of prior arrest (number)

The output is either “release with bail” or “not release with bail”

25.06.2020 | FB 20 | Reactive Programming & Software Technology | 27

Debugging via Decision Boundaries [2]
Individual-level auditing

(Based on an example given in the paper)

Imagine a dataset which is about if a person should be given bail or not.

There are 4 features:

● Gender (“male” or “female”)
● Age (number)
● Employment status (“employed” or “unemployed”)
● Number of prior arrest (number)

The output is either “release with bail” or “not release with bail”

Features values either are discrete

25.06.2020 | FB 20 | Reactive Programming & Software Technology | 28

Debugging via Decision Boundaries [2]
Individual-level auditing

(Based on an example given in the paper)

Imagine a dataset which is about if a person should be given bail or not.

There are 4 features:

● Gender (“male” or “female”)
● Age (number)
● Employment status (“employed” or “unemployed”)
● Number of prior arrest (number)

The output is either “release with bail” or “not release with bail”

Features values either are discrete or ordered

25.06.2020 | FB 20 | Reactive Programming & Software Technology | 29

Debugging via Decision Boundaries [2]
Individual-level auditing

Deep learning model N is trained on a large set of data points

New data point: Marc (male, 40 years old, unemployed, 2 prior arrests)

NMarc No bail

25.06.2020 | FB 20 | Reactive Programming & Software Technology | 30

Debugging via Decision Boundaries [2]
Individual-level auditing

Deep learning model N is trained on a large set of data points

New data point: Marc (male, 40 years old, unemployed, 2 prior arrests)

Marc2 (female, 40 years old, unemployed, 2 prior arrests)

NMarc2 No bail

25.06.2020 | FB 20 | Reactive Programming & Software Technology | 31

Debugging via Decision Boundaries [2]
Individual-level auditing

Deep learning model N is trained on a large set of data points

New data point: Marc (male, 40 years old, unemployed, 2 prior arrests)

Marc3 (female, 40 years old, employed, 2 prior arrests)

NMarc3 Bail

25.06.2020 | FB 20 | Reactive Programming & Software Technology | 32

Debugging via Decision Boundaries [2]
Individual-level auditing

Deep learning model N is trained on a large set of data points

New data point: Marc (male, 40 years old, unemployed, 2 prior arrests)

Marc3 (female, 40 years old, employed, 2 prior arrests)

NMarc3 Bail

Note: employment status = employed changes prediction

25.06.2020 | FB 20 | Reactive Programming & Software Technology | 33

Debugging via Decision Boundaries [2]
Individual-level auditing

Deep learning model N is trained on a large set of data points

New data point: Marc (male, 40 years old, unemployed, 2 prior arrests)

Marc4 (male, x years old, unemployed, 2 prior arrests)

Constrained optimization problem: Find the value of x closest to 40, so
that N(x) = Bail and x ≥ 0 (and x is an integer)

NMarc4 ?

25.06.2020 | FB 20 | Reactive Programming & Software Technology | 34

Debugging via Decision Boundaries [2]
Individual-level auditing

Deep learning model N is trained on a large set of data points

New data point: Marc (male, 40 years old, unemployed, 2 prior arrests)

Marc4 (male, 54 years old, unemployed, 2 prior arrests)

→ x = 54

NMarc4 Bail

Note: age = 54 changes prediction

25.06.2020 | FB 20 | Reactive Programming & Software Technology | 35

Debugging via Decision Boundaries [2]
Individual-level auditing

Deep learning model N is trained on a large set of data points

New data point: Marc (male, 40 years old, unemployed, 2 prior arrests)

Marc5 (male, 40 years old, unemployed, 0 prior arrests)

NMarc5 Bail

Note: prior arrests = 0 changes prediction

25.06.2020 | FB 20 | Reactive Programming & Software Technology | 36

Debugging via Decision Boundaries [2]
Individual-level auditing

Deep learning model N is trained on a large set of data points

New data point: Marc (male, 40 years old, unemployed, 2 prior arrests)

Unconstrained flip point:

Marcflip (x1, x2 years old, x3, x4 prior arrests)

NMarcflip Bail

25.06.2020 | FB 20 | Reactive Programming & Software Technology | 37

Debugging via Decision Boundaries [2]
Individual-level auditing

Deep learning model N is trained on a large set of data points

New data point: Marc (male, 40 years old, unemployed, 2 prior arrests)

Unconstrained flip point:

Marcflip (male, 45 years old, unemployed, 1 prior arrests)

NMarcflip Bail

25.06.2020 | FB 20 | Reactive Programming & Software Technology | 38

Debugging via Decision Boundaries [2]
Individual-level auditing

Report
Based on the following facts:

Marc: male, 40 years old, unemployed, 2 prior arrests

The model recommendation for Marc is: No Bail

25.06.2020 | FB 20 | Reactive Programming & Software Technology | 39

Debugging via Decision Boundaries [2]
Individual-level auditing

Report
Based on the following facts:

Marc: male, 40 years old, unemployed, 2 prior arrests

The model recommendation for Marc is: No Bail

The recommendation would remain No Bail if Marc

● was female (gender = female)
● or had 1 prior arrest

25.06.2020 | FB 20 | Reactive Programming & Software Technology | 40

Debugging via Decision Boundaries [2]
Individual-level auditing

Report
Based on the following facts:

Marc: male, 40 years old, unemployed, 2 prior arrests

The model recommendation for Marc is: No Bail

The recommendation would change to Bail if Marc

● was employed
● or had 0 prior arrest
● or was 54 years old

25.06.2020 | FB 20 | Reactive Programming & Software Technology | 41

Debugging via Decision Boundaries [2]
Individual-level auditing

Report
Based on the following facts:

Marc: male, 40 years old, unemployed, 2 prior arrests

The model recommendation for Marc is: No Bail

The smallest change in features that would change the prediction to
Bail is if Marc

● had 1 prior arrest
● and was 45 years old

25.06.2020 | FB 20 | Reactive Programming & Software Technology | 42

Debugging via Decision Boundaries [2]
Group-level auditing

Possible way to do group-level auditing:

● Compute flip points for all data point:
○ data point matrix D → flip point matrix B

● Calculate the difference of D and B, i. e. the direction from data to flip
points → flip direction matrix F
○ F = B - D

● Now you can analyse F
○ identify most/least influential features
○ study feature dependency

● Model debugging: alter the decision boundary
○ add and teach constrained flip points or flip points with a special

flip label to impact the decision boundary

25.06.2020 | FB 20 | Reactive Programming & Software Technology | 43

Debugging via Decision Boundaries [2]
Group-level auditing - Example

25.06.2020 | FB 20 | Reactive Programming & Software Technology | 44

Model Assertions for Debugging Machine Learning [4]

Idea: Model assertions to find errors → can use those to improve your model

25.06.2020 | FB 20 | Reactive Programming & Software Technology | 45

Visualization Tools

Training machine learning models is expensive in time and energy

If something goes wrong in the training, we want to stop asap

Keeping track of all previous experiments helps for debugging

People often try to remember their results or write them down =>

cumbersome!

A lot of potentially useful data can get lost like that

It is good practice to use assisting tools such as:

● wandb: https://www.wandb.com/
● comet: https://www.comet.ml/site/
● mlflow: https://mlflow.org/

https://www.wandb.com/
https://www.comet.ml/site/
https://mlflow.org/

25.06.2020 | FB 20 | Reactive Programming & Software Technology | 46

Visualization Tools

https://www.wandb.com/experiment-tracking
accessed on 25.06.2020

https://www.wandb.com/experiment-tracking

25.06.2020 | FB 20 | Reactive Programming & Software Technology | 47

Summary

● Debugging machine learning is difficult
○ New risks, new types of errors, new dangers
○ No simple “Go-To-Cookbook”

● Established software debugging tools can be useful if adapted
correctly but probably do not suffice

● Problem and model specific debugging methods should be used,
much literature exists

● Visualization tools available which can help with debugging in an easy
and helpful way
○ But might not be enough!

25.06.2020 | FB 20 | Reactive Programming & Software Technology | 48

Literature

● [1] Hall, Patrick and Burt, Andrew. Why you should care about debugging
machine learning models. O'Reilly. 12/12/2019.
https://www.oreilly.com/radar/why-you-should-care-about-debugging-machine-learning-models/

● [2] Yousefzadeh, R., & O'Leary, D. P. (2020). Auditing and Debugging Deep
Learning Models via Decision Boundaries: Individual-level and Group-level
Analysis. arXiv preprint arXiv:2001.00682.
https://arxiv.org/abs/2001.00682

● [3] Shiqing Ma, Yingqi Liu, Wen-Chuan Lee, Xiangyu Zhang, Ananth Grama.

MODE: Automated Neural Network Model Debugging via State Differential
Analysis and Input Selection. ESEC/FSE 2018. November 2018
https://dl.acm.org/doi/pdf/10.1145/3236024.3236082

● [4] Daniel Kang, Deepti Raghavan, Peter Bailis, Matei Zaharia. Model Assertions
for Debugging Machine Learning. MLSys 2020
https://arxiv.org/pdf/2003.01668.pdf

https://www.oreilly.com/radar/why-you-should-care-about-debugging-machine-learning-models/
https://arxiv.org/abs/2001.00682
https://dl.acm.org/doi/pdf/10.1145/3236024.3236082
https://arxiv.org/pdf/2003.01668.pdf

25.06.2020 | FB 20 | Reactive Programming & Software Technology | 49

Literature

● Yousefzadeh, R., & O'Leary, D. P. (2019). Interpreting neural networks using
flip points. arXiv preprint arXiv:1903.08789.
https://arxiv.org/abs/1903.08789

● Chris Nicholson. A Beginner's Guide to Generative Adversarial Networks
(GANs). Pathmind. 2019.
https://pathmind.com/wiki/generative-adversarial-network-gan

● W&B. Six Ways to Debug a Machine Learning Model. MC.AI. 21/10/2019.
https://medium.com/six-ways-to-debug-a-machine-learning-model/six-ways-to-debug-a-machine-learning-model-57c0829e8
5f4

● Chandrasekhar, Govind. Debugging Neural Networks: A Checklist.
Semantics3 Blog. 8/10/2016.
https://www.semantics3.com/blog/debugging-neural-networks-a-checklist-ca52e11151ec/

https://arxiv.org/abs/1903.08789
https://pathmind.com/wiki/generative-adversarial-network-gan
https://medium.com/six-ways-to-debug-a-machine-learning-model/six-ways-to-debug-a-machine-learning-model-57c0829e85f4
https://medium.com/six-ways-to-debug-a-machine-learning-model/six-ways-to-debug-a-machine-learning-model-57c0829e85f4
https://medium.com/six-ways-to-debug-a-machine-learning-model/six-ways-to-debug-a-machine-learning-model-57c0829e85f4
https://www.semantics3.com/blog/debugging-neural-networks-a-checklist-ca52e11151ec/
https://www.semantics3.com/blog/debugging-neural-networks-a-checklist-ca52e11151ec/

25.06.2020 | FB 20 | Reactive Programming & Software Technology | 50

Acknowledgements & License

● Images are either by the authors of these slides or attributed where
they are used

● These slides are made available by the authors (Florian Busch,
Constantin Stipnieks) under CC BY 4.0

https://creativecommons.org/licenses/by/4.0/legalcode.de

