Model Quality & Metamorphic Testing

TECHNISCHE UNIVERSITÄT DARMSTADT

Seminar SE4AI

- 1. Evaluating Model Quality (Anjali Tewari)
 - Properties and Factors
 - Metrics and Measures
 - Improving MQ
- 2. Metamorphic Testing (Johannes Wehrstein)
 - Oracle Problem
 - Deriving Relations
 - Proving Sufficiency of MT
- 3. Questions & Discussion

MODEL QUALITY

Artificial Intelligence Life Cycle

Talagala, Nisha. "7 Artificial Intelligence Trends and How They Work With Operational Machine Learning." *Oracle Data Science*, blogs.oracle.com/datascience/7-artificialintelligence-trends-and-how-they-work-with-operationalmachine-learning-v2.

ML Testing Properties

Zhang, Jie M., et al. "Machine Learning Testing: Survey, Landscapes and Horizons." IEEE Transactions on Software Engineering, 2020, pp. 1–1

Factors that affect Model Quality

Bias:

- Due to misrepresentation in training sets
- Not enough variance in the testing sets
- Outdated models: Model Quality is everchanging because

data is everchanging

Overfitting/Underfitting: striking the balance between generalization and optimization

Time

Metrics for Model Quality

Bayes Error Rate: Human Performance Rate

Depending on the type of problem, there can be:

Regression Errors

- Mean Squared Error(MSE)
- Root-Mean-Squared-Error(RMSE).
- Mean-Absolute-Error(MAE).
- R² or Coefficient of Determination.
- Adjusted R²

Classification Errors

Classification Error Measures

	Actually A	Actually not A
AI predicts A	True Positive (TP)	False Positive (FP)
AI predicts not A	False Negative (FN)	True Negative (TN)

True positives and true negatives are the correct predictions False negatives are the wrong predictions or misses False positives are wrong predictions or false alarms

This matrix represents 2-class problems, matrices for multi-class problems have additional rows and columns for each class.

Measures for Model Quality

Successful Classifications: Recall = $\frac{TP}{TP + FN}$ False negative rate = $\frac{FN}{TP + FN}$ = 1 – Recall

False Classifications (Noise):

Precision = $\frac{TP}{TP + FP}$ False positve rate = $\frac{FP}{FP + TN}$

Combined measure (harmonic mean): $F1-Score = 2 * \frac{recall * precision}{recall + precision}$

Validation through Experts

Domain expert evaluates the plausibility of a learned model

- Subjective
- Time-intensive
- Costly

But sometimes the only option (e.g. Clustering)

A better solution: Compare generated clusters with manually created clusters

Validation on Data

On-line Validation

On-line validation: test learned model in a fielded application

Pro	Cons
Best estimate for overall utility	Bad model may be costly

Methods:

- Telemetry
- A/B Testing

Improving Model Quality

Avoidable bias

- Training a bigger model
- Training longer optimization models

Variance in data

- · Getting more data
- Different regularization techniques
- Enlarging hyper-parameter search space

Overfitting to Validation set

Data Mismatch

METAMORPHIC TESTING

Scenario

Assume we have following scenario:

- 1. ML based Service
- 2. Data Scarcity / No Test Oracle

Aim: Make sure that Learning Algorithm works well

Solving The Oracle Problem

ASSERTION CHECKING

N-VERSION PROGRAMMING

METAMORPHIC TESTING

Metamorphic Testing

- Approach for both:
 - test case generation
 - ✓ test result verification

Originally proposed for generating new test cases based on successful ones (Chen et al, 1998)

Central element: Metamorphic Relations (MRs)

Metamorphic Testing: A New Approach for Generating Next Test Cases (Chen et al, 1998)

Example Relations for Shortest Path in Graph

Program: P(G, a, b) (computes shortest path between vertices a and b in undirected graph G)

Proving that result is really the shortest path: difficult

Metamorphic Relations

|P(G, b, a)| = |P(G, a, b)| $|P(G, a, b)| + |P(G, b, c)| \ge |P(G, a, c)|$

Metamorphic Relations (MRs)

f: function / algorithm*X*: Input space*Y*: Output space

 $\mathcal{R} \subseteq X^n \times Y^n, n \ge 2$ $R(x_1, x_2, \dots, x_n, f(x_1), f(x_2), \dots, f(x_n))$

Caveat:

 MRs = Relations between Testcases (n ≥ 2), not between Inputs & Outputs (→ Assertion Testing)

Metamorphic Testing Process

Deriving Metamorphic Relations

Derive from problem

Derive from learning algorithm

Deriving MRs from learning algorithm

- 1. Consistence with affine transformation
- 2. Permutation of class labels / attributes
- 3. Addition of uninformative attributes
- 4. Consistence with re-prediction
- 5. Removal of classes

. . .

\rightarrow MRs are independent from underlying problem

Testing and Validating Machine Learning Classifiers by Metamorphic Testing: Xie et al (2009)

Metamorphic Testing

Proving Sufficiency of MT

- Evaluate testing with test coverage (\rightarrow mostly impossible for ML)
- Mutant Testing
- Mutated Tests

TECHNISCHE

Sources

- Ding, Junhua, et al. "A Framework for Ensuring the Quality of a Big Data Service." 2016 IEEE International Conference on Services Computing (SCC), 2016, pp. 82–89.
- Segura, Sergio, et al. "A Survey on Metamorphic Testing." IEEE Transactions on Software Engineering, vol. 42, no. 9, 2016, pp. 805–824.
- Liu, Huai, et al. "How Effectively Does Metamorphic Testing Alleviate the Oracle Problem." IEEE Transactions on Software Engineering, vol. 40, no. 1, 2014, pp. 4–22.
- Chen, Tsong Yueh, et al. "Metamorphic Testing: A Review of Challenges and Opportunities." ACM Computing Surveys, vol. 51, no. 1, 2018, pp. 1–27.
- Zhou, Zhi Quan, et al. "Metamorphic Testing for Software Quality Assessment: A Study of Search Engines." IEEE Transactions on Software Engineering, vol. 42, no. 3, 2016, pp. 264–284.
- Chen, T. Y., et al. "Metamorphic Testing: A New Approach for Generating Next Test Cases." ArXiv Preprint ArXiv:2002.12543, 2020.
- Zhang, Jie M., et al. "Machine Learning Testing: Survey, Landscapes and Horizons." IEEE Transactions on Software Engineering, 2020, pp. 1–1.
- Chen, Jing, et al. "A Metamorphic Testing Approach for Event Sequences." PLOS ONE, vol. 14, no. 2, 2019.
- Barr, Earl T., et al. "The Oracle Problem in Software Testing: A Survey." IEEE Transactions on Software Engineering, vol. 41, no. 5, 2015, pp. 507–525.
- Khokhar, Muhammad Nadeem, et al. "Metamorphic Testing of Al-Based Applications: A Critical Review." International Journal of Advanced Computer Science and Applications, vol. 11, no. 4, 2020.
- Roman, Victor. *How To Develop a Machine Learning Model From Scratch*. 2 Apr. 2019, towardsdatascience.com/machine-learning-general-process-8f1b510bd8af.

- Mello, Arthur. "How Can You Improve Your Machine Learning Model Quality?" *Medium*, Towards Data Science, 2 Apr. 2020, towardsdatascience.com/how-can-you-improveyour-machine-learning-model-guality-b22737d4fe5f.
- Fukunaga, Keinosuke Introduction to Statistical Pattern Recognition by ISBN 0122698517, 1990, pp 3 and 97
- Kaestner, Christian. "Model Quality." 17-445: Model Quality,

ckaestne.github.io/seai/F2019/slides/08_model_quality/modelquality.html.

- Mishra, Divyanshu. "Regression: An Explanation of Regression Metrics And What Can Go Wrong." *Medium*, Towards Data Science, 6 Dec. 2019, towardsdatascience.com/regression-an-explanation-of-regression-metrics-and-whatcan-go-wrong-a39a9793d914.
- Kohavi, Ron & Longbotham, Roger. (2017). Online Controlled Experiments and A/B Testing. 10.1007/978-1-4899-7687-1_891.
- Hand, David, and Peter Christen. "A Note on Using the F-Measure for Evaluating Record Linkage Algorithms." *Statistics and Computing*, vol. 28, no. 3, 2017, pp. 539–547., doi:10.1007/s11222-017-9746-6.
- Perlin, Michael. Quality Assurance for Artificial Intelligence (Part 2). Medium. 09/03/2020.

Your chance to get more...
QUESTIONS

Discussion

• On which kind of ML algorithms Metamorphic Testing is applicable?

Acknowledgements & License

- Images are either by the authors of these slides, attributed where they are used, or their source be found under the "Sources" Section.
- These slides are made available by the authors (Johannes Wehrstein, Anjali Tewari) under <u>CC BY 4.0</u>