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Outline

1. Evaluating Model Quality (Anjali Tewari)

▪ Properties and Factors

▪ Metrics and Measures

▪ Improving MQ

2. Metamorphic Testing (Johannes Wehrstein)

▪ Oracle Problem

▪ Deriving Relations

▪ Proving Sufficiency of MT

3. Questions & Discussion
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MODEL QUALITY
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Artificial Intelligence Life Cycle

Talagala, Nisha. “7 Artificial Intelligence Trends and How 
They Work With Operational Machine Learning.” Oracle 

Data Science, blogs.oracle.com/datascience/7-artificial-

intelligence-trends-and-how-they-work-with-operational-

machine-learning-v2.
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ML Testing Properties

Zhang, Jie M., et al. “Machine Learning Testing: Survey, Landscapes and 
Horizons.” IEEE Transactions on Software Engineering, 2020, pp. 1–1

Correctness 
Model 

relevance 
Robustness Security 

Data Privacy Efficiency Fairness Interpretability
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Factors that affect Model Quality

Bias:

• Due to misrepresentation in training sets

• Not enough variance in the testing sets

Outdated models: Model Quality is everchanging because 

data is everchanging

Overfitting/Underfitting: striking the balance between 

generalization and optimization

Underfitted

Good Fit/Robust

Overfitted
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Metrics for Model Quality

Bayes Error Rate: Human Performance Rate

Depending on the type of problem, there can be:

Regression Errors

• Mean Squared Error(MSE)

• Root-Mean-Squared-Error(RMSE).

• Mean-Absolute-Error(MAE).

• R² or Coefficient of Determination.

• Adjusted R²

Classification Errors
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Classification Error Measures

Actually A Actually not A

AI predicts A True Positive (TP) False Positive (FP)

AI predicts not A False Negative (FN) True Negative (TN)

True positives and true negatives are the correct predictions

False negatives are the wrong predictions or misses

False positives are wrong predictions or false alarms

This matrix represents 2-class problems, matrices for multi-class problems have 

additional rows and columns for each class.
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Measures for Model Quality

Successful Classifications:Recall = 𝑇𝑃𝑇𝑃 + 𝐹𝑁False negative rate = 𝐹𝑁𝑇𝑃 + 𝐹𝑁 = 1− Recall
False Classifications (Noise):Precision = 𝑇𝑃𝑇𝑃 + 𝐹𝑃False positve rate = 𝐹𝑃𝐹𝑃 + 𝑇𝑁
Combined measure (harmonic mean):F1−Score = 2 ∗ recall ∗ precisionrecall + precision Source: https://en.wikipedia.org/wiki/F1_score

https://en.wikipedia.org/wiki/F1_score
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Validation through Experts

Domain expert evaluates the plausibility of a 

learned model

• Subjective

• Time-intensive

• Costly

But sometimes the only option (e.g. Clustering)

A better solution: Compare generated clusters 

with manually created clusters

Run Clustering 

Algo

Visually Explore

Manually Refine

Interpret Result
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Validation on Data

Test Set / Validation SetUsing

K-Fold ValidationUsing

Iterative K-Fold Validation with ShufflingUsing
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On-line Validation

On-line validation: test learned model in a fielded application 

Methods:

• Telemetry

• A/B Testing

Pro Cons

Best estimate for overall utility Bad model may be costly
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Improving Model Quality

Avoidable bias

• Training a bigger model

• Training longer optimization models

Variance in data

• Getting more data

• Different regularization techniques

• Enlarging hyper-parameter search space

Overfitting to Validation set

Data Mismatch



18.06.2020 |  Seminar SE4AI  |  Johannes Wehrstein & Anjali Tewari  |  14

METAMORPHIC TESTING
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Scenario

Assume we have following scenario:

1. ML based Service 

2. Data Scarcity / No Test Oracle

Aim: Make sure that Learning Algorithm works well
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Solving The Oracle Problem

ASSERTION 
CHECKING

N-VERSION 
PROGRAMMING

METAMORPHIC 
TESTING
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Metamorphic Testing

Approach for both:

test case generation

test result verification

Originally proposed for generating new test cases based on successful ones

(Chen et al, 1998)

Central element: Metamorphic Relations (MRs)

Metamorphic Testing: A New Approach for Generating Next Test Cases (Chen et al, 1998)
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Example Relations for Shortest Path in Graph

Program: P(𝐺, 𝑎, 𝑏) (computes shortest path between 

vertices 𝑎 and 𝑏 in undirected graph 𝐺)

Proving that result is really the shortest path: difficult

𝑃 𝐺, 𝑏, 𝑎 = |𝑃 𝐺, 𝑎, 𝑏 |𝑃 𝐺, 𝑎, 𝑏 + |𝑃(𝐺, 𝑏, 𝑐)| ≥ |𝑃 𝐺, 𝑎, 𝑐 |
Metamorphic Relations
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Metamorphic Relations (MRs)
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Apply MRs

𝑓: function / algorithm𝑋: Input space𝑌: Output space

ℛ ⊆ 𝑋𝑛 × 𝑌𝑛, 𝑛 ≥ 2𝑅(𝑥1, 𝑥2, … , 𝑥𝑛, 𝑓 𝑥1 , 𝑓 𝑥2 , … , 𝑓 𝑥𝑛 )
Caveat:

• MRs = Relations between Testcases (𝑛 ≥ 2), 

not between Inputs & Outputs (→ Assertion Testing)
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Metamorphic Testing Process

Develop MRs
Generate follow-up

dataset

Run (learning) 
algorithm on 

follow-up dataset
Evaluation
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Derive from 
learning algorithm

Deriving Metamorphic Relations

Derive from 
problem 
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Deriving MRs from learning algorithm

1. Consistence with affine transformation

2. Permutation of class labels / attributes

3. Addition of uninformative attributes

4. Consistence with re-prediction

5. Removal of classes

…

→ MRs are independent from underlying problem
Testing and Validating Machine Learning Classifiers by Metamorphic Testing: Xie et al (2009)
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Metamorphic Testing

Execute MT
(create follow-

up dataset, 
run algorithm)

Evalution (check 
effectiveness of MT)

Refinement of 
MRs
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Proving Sufficiency of MT

• Evaluate testing with test coverage (→ mostly impossible for ML)

• Mutant Testing

• Mutated Tests
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MT: Advantages / Disadvantages

Advantages Disadvantages

Simplicity in 
concept

Straightforward 
implementation

Ease of 
automation 

Low costs

Difficult 
generation of 

MR

Requires „fast“ 
learning 

algorithms

Difficulty dealing 
with 

indeterminism
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QUESTIONS

Your chance to get more…
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Discussion

• On which kind of ML algorithms Metamorphic Testing is applicable?



18.06.2020 |  Seminar SE4AI  |  Johannes Wehrstein & Anjali Tewari  |  30

Acknowledgements & License

• Images are either by the authors of these slides, attributed where they are 

used, or their source be found under the "Sources" Section.

• These slides are made available by the authors (Johannes Wehrstein, 

Anjali Tewari) under CC BY 4.0

https://creativecommons.org/licenses/by/4.0/legalcode.de

