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Overview

1. AI makes mistakes

2. Requirements

3. Risks

4. Risks mitigation ideas
• Feature selection

• Testing

• Monitoring

5. Conclusion
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AI makes mistakes

The mistakes intelligence makes:

• Aren’t necessarily intuitive.

• Aren’t the same from day to day.

• Aren’t easy to find ahead of time.

• Aren’t possible to fix with “just a little more work on 
intelligence.”
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Different types of mistakes

There Not there

There True positive False negative

Not There False positive True negative

Someone 
actually is

The Intelligence says some is
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AI Changes

• If it learns something new, it maybe changes the result.
• …but in which way?

• We control the way AI changes
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Humanfactor

• Confusion

• Distrust

• Lack of confidence

• Fatigue

• Creep Factor
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Intelligence Quality

• What makes an AI a good AI?
• It depends on the use case

• A better Intelligence can support more forceful, frequent 
experiences

• Change comes from improved intelligence
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Requirements Engineering

• The Process of defining the Specifications of the 
Software

• A lot of definitions and standards (e.g. IEEE 830)
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Types of Requirements

• Functional requirements
• What the system should do in terms of functionality

• Input & output, response to events

• Quality (non-functional) requirements
• How well the system delivers its functionality

• Performance, reliability, security, safety, availability...
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Specification in AI

Hard specifications are difficult

• Available Data is often small or partially describe the 
wanted AI model

• Accuracy is often not the requirement in an AI system (it’s 
quite okay if the model makes wrong predictions)
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Importance of Context 

Too many parameters, features, sensors and the human 
factor (complex problem)

• Slicing context to simple smaller problems

• Monitoring user activities

• Training AI to target smaller problems

• Continual verification
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AI Models are specifications

• The AI Model is just a Specification
• What should it do?

• If the implementation is correct but the result is wrong, it 
could be the wrong Model 
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Machine learning is like requirements 
engineering

Machine Learning as Requirements Engineering (Source [1])
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Machine learning is like requirements 
engineering

Assuming AI models are specifications

• We need to identify relevant and representative data

• In both machine learning and requirements engineering, 
we may need to compromise user-desired functionality 
with laws governing privacy, fairness, or security

• When we identify that the specification does not fit, we 
have often gained valuable insights and in some cases 
learn something immediately actionable
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Intelligent Experiences are Complex

Ø Understanding AI mistakes is not intuitive

Ø Unmitigated mistakes may result in system distrust

Ø False positives and false negatives may result in confusion

à Lack of confidence, safety and reliability in the systemFigure 1. ML Systems Require Extensive Testing and Monitoring. The key consideration is that unlike a manually coded system (left), ML-based
system behavior is not easily specified in advance. This behavior depends on dynamic qualities of the data, and on various model configuration choices.

concerned with determining how reliable an ML system is
rather than how to build one.

Issues of surprising sources of technical debt in ML
systems has been studied before [1]. It has been noted that
the prior work has identified problems but been largely silent
on how to address them; this paper details actionable advice
drawn from practice and verified with extensive interviews
with the maintainers of 36 real world systems.

II. TESTS FOR FEATURES AND DATA

Machine learning systems differ from traditional software-
based systems in that the behavior of ML systems is not
specified directly in code but is learned from data. Therefore,
while traditional software can rely on unit tests and integra-
tion tests of the code, here we attempt to add a sufficient
set of tests of the data.

Data 1: Feature expectations are captured in a
schema: It is useful to encode intuitions about the data
in a schema so they can be automatically checked. For
example, an adult human is surely between one and ten
feet in height. The most common word in English text is
probably ‘the’, with other word frequencies following a
power-law distribution. Such expectations can be used for
tests on input data during training and serving (see test
Monitor 2).

How? To construct the schema, one approach is to start
with calculating statistics from training data, and then ad-
justing them as appropriate based on domain knowledge. It
may also be useful to start by writing down expectations
and then compare them to the data to avoid an anchoring

1 Feature expectations are captured in a schema.
2 All features are beneficial.
3 No feature’s cost is too much.
4 Features adhere to meta-level requirements.
5 The data pipeline has appropriate privacy controls.
6 New features can be added quickly.
7 All input feature code is tested.

Table I
BRIEF LISTING OF THE SEVEN DATA TESTS.

bias. Visualization tools such as Facets1 can be very useful
for analyzing the data to produce the schema. Invariants to
capture in a schema can also be inferred automatically from
your system’s behavior [8].

Data 2: All features are beneficial: A kitchen-sink
approach to features can be tempting, but every feature
added has a software engineering cost. Hence, it’s important
to understand the value each feature provides in additional
predictive power (independent of other features).

How? Some ways to run this test are by computing
correlation coefficients, by training models with one or two
features, or by training a set of models that each have one
of k features individually removed.

Data 3: No feature’s cost is too much: It is not
only a waste of computing resources, but also an ongoing
maintenance burden to include ✏-features that add only
minimal predictive benefit [1].

How? To measure the costs of a feature, consider not
only added inference latency and RAM usage, but also
more upstream data dependencies, and additional expected
instability incurred by relying on that feature. See Rule#22
[6] for further discussion.

Data 4: Features adhere to meta-level requirements:
Your project may impose requirements on the data coming
in to the system. It might prohibit features derived from user
data, prohibit the use of specific features like age, or simply
prohibit any feature that is deprecated. It might require all
features be available from a single source. However, during
model development and experimentation, it is typical to try
out a wide variety of potential features to improve prediction
quality.

How? Programmatically enforce these requirements, so
that all models in production properly adhere to them.

Data 5: The data pipeline has appropriate privacy
controls: Training data, validation data, and vocabulary files
all have the potential to contain sensitive user data. While
teams often are aware of the need to remove personally iden-
tifiable information (PII), during this type of exporting and

1https://pair-code.github.io/facets/

ML-Based Testing and Monitoring (Source [2])
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Risks Mitigation

v Complex AI systems require constant testing and monitoring

à Large technical debt

v Traditional ways of paying debt 
1. Code refactoring

2. Increasing coverage of unit tests

3. Reduce dependencies

4. Improving documentation

à Code and system-level complexity for MLFigure 1. ML Systems Require Extensive Testing and Monitoring. The key consideration is that unlike a manually coded system (left), ML-based
system behavior is not easily specified in advance. This behavior depends on dynamic qualities of the data, and on various model configuration choices.

concerned with determining how reliable an ML system is
rather than how to build one.

Issues of surprising sources of technical debt in ML
systems has been studied before [1]. It has been noted that
the prior work has identified problems but been largely silent
on how to address them; this paper details actionable advice
drawn from practice and verified with extensive interviews
with the maintainers of 36 real world systems.

II. TESTS FOR FEATURES AND DATA

Machine learning systems differ from traditional software-
based systems in that the behavior of ML systems is not
specified directly in code but is learned from data. Therefore,
while traditional software can rely on unit tests and integra-
tion tests of the code, here we attempt to add a sufficient
set of tests of the data.

Data 1: Feature expectations are captured in a
schema: It is useful to encode intuitions about the data
in a schema so they can be automatically checked. For
example, an adult human is surely between one and ten
feet in height. The most common word in English text is
probably ‘the’, with other word frequencies following a
power-law distribution. Such expectations can be used for
tests on input data during training and serving (see test
Monitor 2).

How? To construct the schema, one approach is to start
with calculating statistics from training data, and then ad-
justing them as appropriate based on domain knowledge. It
may also be useful to start by writing down expectations
and then compare them to the data to avoid an anchoring

1 Feature expectations are captured in a schema.
2 All features are beneficial.
3 No feature’s cost is too much.
4 Features adhere to meta-level requirements.
5 The data pipeline has appropriate privacy controls.
6 New features can be added quickly.
7 All input feature code is tested.

Table I
BRIEF LISTING OF THE SEVEN DATA TESTS.

bias. Visualization tools such as Facets1 can be very useful
for analyzing the data to produce the schema. Invariants to
capture in a schema can also be inferred automatically from
your system’s behavior [8].

Data 2: All features are beneficial: A kitchen-sink
approach to features can be tempting, but every feature
added has a software engineering cost. Hence, it’s important
to understand the value each feature provides in additional
predictive power (independent of other features).

How? Some ways to run this test are by computing
correlation coefficients, by training models with one or two
features, or by training a set of models that each have one
of k features individually removed.

Data 3: No feature’s cost is too much: It is not
only a waste of computing resources, but also an ongoing
maintenance burden to include ✏-features that add only
minimal predictive benefit [1].

How? To measure the costs of a feature, consider not
only added inference latency and RAM usage, but also
more upstream data dependencies, and additional expected
instability incurred by relying on that feature. See Rule#22
[6] for further discussion.

Data 4: Features adhere to meta-level requirements:
Your project may impose requirements on the data coming
in to the system. It might prohibit features derived from user
data, prohibit the use of specific features like age, or simply
prohibit any feature that is deprecated. It might require all
features be available from a single source. However, during
model development and experimentation, it is typical to try
out a wide variety of potential features to improve prediction
quality.

How? Programmatically enforce these requirements, so
that all models in production properly adhere to them.

Data 5: The data pipeline has appropriate privacy
controls: Training data, validation data, and vocabulary files
all have the potential to contain sensitive user data. While
teams often are aware of the need to remove personally iden-
tifiable information (PII), during this type of exporting and

1https://pair-code.github.io/facets/

Traditional System Testing and Monitoring (Source [2])
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Data and Feature Selection

1. Identify expected features from the training data in 
schemas with help of statistics for future analysis

2. Understanding the value of every feature

3. Reduce the feature set to the features that add the most 
predictive benefit

4. The training data has appropriate privacy controls
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Testing

1. Version control for the model code and training data

2. Use A/B testing to understand online vs. offline result 
evaluation and model’s staleness

3. Use data slicing to understand model quality

4. Enforce ML faireness

5. Implement unit test for API usage

6. Implement assertions to verify the ML’s algorithmic sub-
computations
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Monitoring

It’s important verify that the ML system is working over time

à In case of an incident that ML system code can be rolled back

How?
1. Notify on dependency changes

2. Log traffic and label data of new evolving features for future 
analysis

3. Measure statistical bias in predictions to monitor prediction quality
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Conclusion

Ø AI makes different and unpredictable mistakes

Ø Undestanding AI mistakes isn’t intuitive

Ø AI changes over time

Ø Understanding context is a complex task

Ø Requirements engineering produces large amount of technical debt

Ø Possible mitigations:
1. Data and Feature Selection

2. Testing

3. Monitoring
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Questions
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THANK YOU FOR YOUR ATTENTION!
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