
09.06.20 | FB 20 | SE4AI Requirements and Risks | D. El-Soufi, B. Fleischmann | 1

Dani El-Soufi
Benjamin Fleischmann
TU Darmstadt – SS 20

Software Engineering for Artificial Intelligence

Requirements and Risks

09.06.20 | FB 20 | SE4AI Requirements and Risks | D. El-Soufi, B. Fleischmann | 2

Overview

1. AI makes mistakes

2. Requirements

3. Risks

4. Risks mitigation ideas
• Feature selection

• Testing

• Monitoring

5. Conclusion

09.06.20 | FB 20 | SE4AI Requirements and Risks | D. El-Soufi, B. Fleischmann | 3

AI makes mistakes

The mistakes intelligence makes:

• Aren’t necessarily intuitive.

• Aren’t the same from day to day.

• Aren’t easy to find ahead of time.

• Aren’t possible to fix with “just a little more work on
intelligence.”

09.06.20 | FB 20 | SE4AI Requirements and Risks | D. El-Soufi, B. Fleischmann | 4

Different types of mistakes

There Not there

There True positive False negative

Not There False positive True negative

Someone
actually is

The Intelligence says some is

09.06.20 | FB 20 | SE4AI Requirements and Risks | D. El-Soufi, B. Fleischmann | 5

AI Changes

• If it learns something new, it maybe changes the result.
• …but in which way?

• We control the way AI changes

09.06.20 | FB 20 | SE4AI Requirements and Risks | D. El-Soufi, B. Fleischmann | 6

Humanfactor

• Confusion

• Distrust

• Lack of confidence

• Fatigue

• Creep Factor

09.06.20 | FB 20 | SE4AI Requirements and Risks | D. El-Soufi, B. Fleischmann | 7

Intelligence Quality

• What makes an AI a good AI?
• It depends on the use case

• A better Intelligence can support more forceful, frequent
experiences

• Change comes from improved intelligence

09.06.20 | FB 20 | SE4AI Requirements and Risks | D. El-Soufi, B. Fleischmann | 8

Requirements Engineering

• The Process of defining the Specifications of the
Software

• A lot of definitions and standards (e.g. IEEE 830)

09.06.20 | FB 20 | SE4AI Requirements and Risks | D. El-Soufi, B. Fleischmann | 9

Types of Requirements

• Functional requirements
• What the system should do in terms of functionality

• Input & output, response to events

• Quality (non-functional) requirements
• How well the system delivers its functionality

• Performance, reliability, security, safety, availability...

09.06.20 | FB 20 | SE4AI Requirements and Risks | D. El-Soufi, B. Fleischmann | 10

Specification in AI

Hard specifications are difficult

• Available Data is often small or partially describe the
wanted AI model

• Accuracy is often not the requirement in an AI system (it’s
quite okay if the model makes wrong predictions)

09.06.20 | FB 20 | SE4AI Requirements and Risks | D. El-Soufi, B. Fleischmann | 11

Importance of Context

Too many parameters, features, sensors and the human
factor (complex problem)

• Slicing context to simple smaller problems

• Monitoring user activities

• Training AI to target smaller problems

• Continual verification

09.06.20 | FB 20 | SE4AI Requirements and Risks | D. El-Soufi, B. Fleischmann | 12

AI Models are specifications

• The AI Model is just a Specification
• What should it do?

• If the implementation is correct but the result is wrong, it
could be the wrong Model

09.06.20 | FB 20 | SE4AI Requirements and Risks | D. El-Soufi, B. Fleischmann | 13

Machine learning is like requirements
engineering

Machine Learning as Requirements Engineering (Source [1])

09.06.20 | FB 20 | SE4AI Requirements and Risks | D. El-Soufi, B. Fleischmann | 14

Machine learning is like requirements
engineering

Assuming AI models are specifications

• We need to identify relevant and representative data

• In both machine learning and requirements engineering,
we may need to compromise user-desired functionality
with laws governing privacy, fairness, or security

• When we identify that the specification does not fit, we
have often gained valuable insights and in some cases
learn something immediately actionable

09.06.20 | FB 20 | SE4AI Requirements and Risks | D. El-Soufi, B. Fleischmann | 15

Intelligent Experiences are Complex

Ø Understanding AI mistakes is not intuitive

Ø Unmitigated mistakes may result in system distrust

Ø False positives and false negatives may result in confusion

à Lack of confidence, safety and reliability in the systemFigure 1. ML Systems Require Extensive Testing and Monitoring. The key consideration is that unlike a manually coded system (left), ML-based
system behavior is not easily specified in advance. This behavior depends on dynamic qualities of the data, and on various model configuration choices.

concerned with determining how reliable an ML system is
rather than how to build one.

Issues of surprising sources of technical debt in ML
systems has been studied before [1]. It has been noted that
the prior work has identified problems but been largely silent
on how to address them; this paper details actionable advice
drawn from practice and verified with extensive interviews
with the maintainers of 36 real world systems.

II. TESTS FOR FEATURES AND DATA

Machine learning systems differ from traditional software-
based systems in that the behavior of ML systems is not
specified directly in code but is learned from data. Therefore,
while traditional software can rely on unit tests and integra-
tion tests of the code, here we attempt to add a sufficient
set of tests of the data.

Data 1: Feature expectations are captured in a
schema: It is useful to encode intuitions about the data
in a schema so they can be automatically checked. For
example, an adult human is surely between one and ten
feet in height. The most common word in English text is
probably ‘the’, with other word frequencies following a
power-law distribution. Such expectations can be used for
tests on input data during training and serving (see test
Monitor 2).

How? To construct the schema, one approach is to start
with calculating statistics from training data, and then ad-
justing them as appropriate based on domain knowledge. It
may also be useful to start by writing down expectations
and then compare them to the data to avoid an anchoring

1 Feature expectations are captured in a schema.
2 All features are beneficial.
3 No feature’s cost is too much.
4 Features adhere to meta-level requirements.
5 The data pipeline has appropriate privacy controls.
6 New features can be added quickly.
7 All input feature code is tested.

Table I
BRIEF LISTING OF THE SEVEN DATA TESTS.

bias. Visualization tools such as Facets1 can be very useful
for analyzing the data to produce the schema. Invariants to
capture in a schema can also be inferred automatically from
your system’s behavior [8].

Data 2: All features are beneficial: A kitchen-sink
approach to features can be tempting, but every feature
added has a software engineering cost. Hence, it’s important
to understand the value each feature provides in additional
predictive power (independent of other features).

How? Some ways to run this test are by computing
correlation coefficients, by training models with one or two
features, or by training a set of models that each have one
of k features individually removed.

Data 3: No feature’s cost is too much: It is not
only a waste of computing resources, but also an ongoing
maintenance burden to include ✏-features that add only
minimal predictive benefit [1].

How? To measure the costs of a feature, consider not
only added inference latency and RAM usage, but also
more upstream data dependencies, and additional expected
instability incurred by relying on that feature. See Rule#22
[6] for further discussion.

Data 4: Features adhere to meta-level requirements:
Your project may impose requirements on the data coming
in to the system. It might prohibit features derived from user
data, prohibit the use of specific features like age, or simply
prohibit any feature that is deprecated. It might require all
features be available from a single source. However, during
model development and experimentation, it is typical to try
out a wide variety of potential features to improve prediction
quality.

How? Programmatically enforce these requirements, so
that all models in production properly adhere to them.

Data 5: The data pipeline has appropriate privacy
controls: Training data, validation data, and vocabulary files
all have the potential to contain sensitive user data. While
teams often are aware of the need to remove personally iden-
tifiable information (PII), during this type of exporting and

1https://pair-code.github.io/facets/

ML-Based Testing and Monitoring (Source [2])

09.06.20 | FB 20 | SE4AI Requirements and Risks | D. El-Soufi, B. Fleischmann | 16

Risks Mitigation

v Complex AI systems require constant testing and monitoring

à Large technical debt

v Traditional ways of paying debt
1. Code refactoring

2. Increasing coverage of unit tests

3. Reduce dependencies

4. Improving documentation

à Code and system-level complexity for MLFigure 1. ML Systems Require Extensive Testing and Monitoring. The key consideration is that unlike a manually coded system (left), ML-based
system behavior is not easily specified in advance. This behavior depends on dynamic qualities of the data, and on various model configuration choices.

concerned with determining how reliable an ML system is
rather than how to build one.

Issues of surprising sources of technical debt in ML
systems has been studied before [1]. It has been noted that
the prior work has identified problems but been largely silent
on how to address them; this paper details actionable advice
drawn from practice and verified with extensive interviews
with the maintainers of 36 real world systems.

II. TESTS FOR FEATURES AND DATA

Machine learning systems differ from traditional software-
based systems in that the behavior of ML systems is not
specified directly in code but is learned from data. Therefore,
while traditional software can rely on unit tests and integra-
tion tests of the code, here we attempt to add a sufficient
set of tests of the data.

Data 1: Feature expectations are captured in a
schema: It is useful to encode intuitions about the data
in a schema so they can be automatically checked. For
example, an adult human is surely between one and ten
feet in height. The most common word in English text is
probably ‘the’, with other word frequencies following a
power-law distribution. Such expectations can be used for
tests on input data during training and serving (see test
Monitor 2).

How? To construct the schema, one approach is to start
with calculating statistics from training data, and then ad-
justing them as appropriate based on domain knowledge. It
may also be useful to start by writing down expectations
and then compare them to the data to avoid an anchoring

1 Feature expectations are captured in a schema.
2 All features are beneficial.
3 No feature’s cost is too much.
4 Features adhere to meta-level requirements.
5 The data pipeline has appropriate privacy controls.
6 New features can be added quickly.
7 All input feature code is tested.

Table I
BRIEF LISTING OF THE SEVEN DATA TESTS.

bias. Visualization tools such as Facets1 can be very useful
for analyzing the data to produce the schema. Invariants to
capture in a schema can also be inferred automatically from
your system’s behavior [8].

Data 2: All features are beneficial: A kitchen-sink
approach to features can be tempting, but every feature
added has a software engineering cost. Hence, it’s important
to understand the value each feature provides in additional
predictive power (independent of other features).

How? Some ways to run this test are by computing
correlation coefficients, by training models with one or two
features, or by training a set of models that each have one
of k features individually removed.

Data 3: No feature’s cost is too much: It is not
only a waste of computing resources, but also an ongoing
maintenance burden to include ✏-features that add only
minimal predictive benefit [1].

How? To measure the costs of a feature, consider not
only added inference latency and RAM usage, but also
more upstream data dependencies, and additional expected
instability incurred by relying on that feature. See Rule#22
[6] for further discussion.

Data 4: Features adhere to meta-level requirements:
Your project may impose requirements on the data coming
in to the system. It might prohibit features derived from user
data, prohibit the use of specific features like age, or simply
prohibit any feature that is deprecated. It might require all
features be available from a single source. However, during
model development and experimentation, it is typical to try
out a wide variety of potential features to improve prediction
quality.

How? Programmatically enforce these requirements, so
that all models in production properly adhere to them.

Data 5: The data pipeline has appropriate privacy
controls: Training data, validation data, and vocabulary files
all have the potential to contain sensitive user data. While
teams often are aware of the need to remove personally iden-
tifiable information (PII), during this type of exporting and

1https://pair-code.github.io/facets/

Traditional System Testing and Monitoring (Source [2])

09.06.20 | FB 20 | SE4AI Requirements and Risks | D. El-Soufi, B. Fleischmann | 17

Data and Feature Selection

1. Identify expected features from the training data in
schemas with help of statistics for future analysis

2. Understanding the value of every feature

3. Reduce the feature set to the features that add the most
predictive benefit

4. The training data has appropriate privacy controls

09.06.20 | FB 20 | SE4AI Requirements and Risks | D. El-Soufi, B. Fleischmann | 18

Testing

1. Version control for the model code and training data

2. Use A/B testing to understand online vs. offline result
evaluation and model’s staleness

3. Use data slicing to understand model quality

4. Enforce ML faireness

5. Implement unit test for API usage

6. Implement assertions to verify the ML’s algorithmic sub-
computations

09.06.20 | FB 20 | SE4AI Requirements and Risks | D. El-Soufi, B. Fleischmann | 19

Monitoring

It’s important verify that the ML system is working over time

à In case of an incident that ML system code can be rolled back

How?
1. Notify on dependency changes

2. Log traffic and label data of new evolving features for future
analysis

3. Measure statistical bias in predictions to monitor prediction quality

09.06.20 | FB 20 | SE4AI Requirements and Risks | D. El-Soufi, B. Fleischmann | 20

Conclusion

Ø AI makes different and unpredictable mistakes

Ø Undestanding AI mistakes isn’t intuitive

Ø AI changes over time

Ø Understanding context is a complex task

Ø Requirements engineering produces large amount of technical debt

Ø Possible mitigations:
1. Data and Feature Selection

2. Testing

3. Monitoring

09.06.20 | FB 20 | SE4AI Requirements and Risks | D. El-Soufi, B. Fleischmann | 21

Questions

09.06.20 | FB 20 | SE4AI Requirements and Risks | D. El-Soufi, B. Fleischmann | 22

THANK YOU FOR YOUR ATTENTION!

09.06.20 | FB 20 | SE4AI Requirements and Risks | D. El-Soufi, B. Fleischmann | 23

References

[1] Kaestner, C., “Machine Learning is Requirements Engineering — On the Role of Bugs,
Verification, and Validation in Machine Learning”, https://medium.com/analytics-
vidhya/machine-learning-is-requirements-engineering-8957aee55ef4, 2020 (visited
07.06.2020).

[2] Breck, E., Cai, S., Nielsen, E., Salib, M. and Sculley, D., "The ML test score: A rubric for
ML production readiness and technical debt reduction," 2017 IEEE International
Conference on Big Data (Big Data), Boston, MA, 2017, pp. 1123-1132.

[3] Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T., Ebner, D., Chaudhary, V. &
Young, M., “Machine Learning: The High Interest Credit Card of Technical Debt”, SE4ML:
Software Engineering for Machine Learning (NIPS 2014 Workshop), 2014.

[4] Borg, M., “Requirements Engineering for Machine Learning: Perspectives from Data
Scientists”, http://mrksbrg.com/aire19-vogelsang/, 2019 (visited 07.06.2020).

[5] Hulten, G., ”Building intelligent systems : A guide to machine learning engineering”,
Apress L. P., 2018.

https://medium.com/analytics-vidhya/machine-learning-is-requirements-engineering-8957aee55ef4
http://mrksbrg.com/aire19-vogelsang/

09.06.20 | FB 20 | SE4AI Requirements and Risks | D. El-Soufi, B. Fleischmann | 24

Acknowledgements & License

• The Images either come from the authors of these slides
or the sources are linked

• These slides are made available by the authors (Dani El-
Soufi, Benjamin Fleischmann) under CC BY 4.0

