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What are the major challenges when designing Al-enabled applications
What are common pitfalls encountered during development

How can you approach these Problems with Software Engineering?
Example architectures

m Conclusion
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® In 2019 Openai first announced their new GPT-2 model for natural language generation [1]
= Results are considered by many to be quite impressive (e.g. the unicorn example')

= Final model has a file size of over five gigabytes and requires special GPUs to be executed in
seconds

Thttps://openai.com/blog/better-language-models#samplel
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Reasons taken from “Building Intelligent Systems” [2]:
= ML models can be big and computationally heavy to execute

o execution and update latencies
o operation costs

m intellectual property

Challenge

Al-enabled applications might need complicated deployment setups.
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2. T:yTweets [}

= Microsoft released an intelligent chatbot
@tayandyou in 2016
m intended to learn from user interactions

m bot started tweeting racist propaganda
hours after launch [4]

(ee) (B2) ( Foltow )

TayTweets 6

@TayandYou

The official account of Tay, Microsoft's A.L. fam from the internet that's got zero chill! The more you
talk the smarter Tay gets

© theinternets (& tay.aif#tabout [ Joined December 2015

OFollowing  118.8K Followers

Figure 1: Twitter profile of the Tay Chatbot [3]
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m Al-enabled applications need to be supervised
m Complete feedback loop needs to be monitored (input and output)
®m Models can learn in production but this requires special care

Challenge

Al-enabled applications might need more/different supervision compared to traditional systems.
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Figure 3: Picasa Face Detection

Figure 2: Google Maps Navigation
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m Different models might be necessary depending on the current usage context
m Multiple models might be tested alongside each other

Challenge

Al-enabled applications might need to be able to switch between different models in production.
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Figure 5: Organizational Issues

Figure 4: Caching
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Antipatterns [5]:
m Glue Code
Pipeline Jungles
Dead Experimental Codepaths
Abstraction Debt
m Common Smells
What about design and architecture patterns for ML?
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Figure 7: Distinguish Business Logic from ML Models, Yokoyama [7]
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Figure 9: ML microservice architecture, [8]

Figure 8: Siri and Alexa
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® Rewe Digital uses microservices in production for their product recognition service [9]
m Netflix started deploying jupyter notebooks in production [10]

02.06.2020 | Computer Science Department | Reactive Programming Group | D. Ochs, H. Carrasco | 15



Microservice architectures for ML TECHNISCHE

UNIVERSITAT
How are the challenges addressed DARMSTADT

= Deployment Locations
o Models can be wrapped in containers — can easily be scheduled e.g. by using kubernetes
= Model Supervision

o Inputs and Outputs can be closely monitored
o Replaying of requests possible — have a "production” and a "learning" model

= Multiple models

o Routing of requests is made simpler since microservice interfaces are properly defined
o Models can easily be substituted or replaced

Capsuling machine learning models inside a microservice allows leveraging existing technology to
combat Al-specific challenges.
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m Al-enabled applications will become more prevalent in the future
m engineers might face new challenges and pitfalls when developing them
m research is currently quite sparse in this particular area of software engineering
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Questions?
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® "two girls illustrations" by "Clarisse Croset" (title slide) is licensed under the Unsplash license
https://unsplash.com/photos/-tikpxRBcsA

® "ia-siri" by portalgda is licensed under CC BY-NC-SA 2.0
https://www.flickr.com/photos/135518748@N08/42075167191

m "Portrait of a lifeless Alexa." is licensed under Unsplash License
https://unsplash.com/photos/k1osF_h2fzA

m "Database icon in the Tango style." (Figure 4) by "dracos" is licensed under CC BY-SA 3.0
https://commons.wikimedia.org/wiki/File:Applications-database.svg

® "Team work, work colleagues, working together" (Figure 5) by "Annie Spratt" is licensed under
the Unsplash license https://unsplash.com/photos/QckxruozjRg

® "smartphone turned on inside vehicle" (Figure 2) by "Isaac Mehegan" is licensed under the
Unsplash license https://unsplash.com/photos/7x5V13744KM

= "Face detection" by "Chris Wong" (Figure 3) is licensed under BY-NC-ND 2.0 2.0
https://flic.kr/p/8VLr4A
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This work is licensed under a Creative Commons “Attribution- @ @@

ShareAlike 4.0 International” license.
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