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Motivation

● Imagine that you want to implement an app which recommends 
products based on a user's activity... 
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Team A
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Team A

What are your thoughts about this architecture?
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Team A: Possible Problems

● Data Collection and new data types 
 → Pipeline Jungle

● Using third-party ML code 
→  Glue Code

● ML on the smartphone 
 → Big Ass Script, Experimental Codepaths
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Team B



6/10/20  |  FB20  | Reactive Programming & Software Technology  |  Marcel de Boer, Zlatko Kolev  |  8

Team B

What are your thoughts about this architecture?
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Team B: Possible Problems

● Use different 3rd party ML Models 
 → Glue code, Multiple-language smell

● Distributed system 
 → Abstraction debt

● Different models might sort the products differently 
 → Undeclared consumers
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Technical Debt

● Machine Learning doesn't come for free!

● Main challenges

– Entanglement  CACE principle→ 
– Correction Cascades

– Data Dependencies

– Feedback Loops

● Anti-Patterns!
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Architectures of AI-enabled Systems

Based on Figure 1 by D. Sculley et al. 2015. Hidden technical debt in Machine learning systems. 
https://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf, last access 01.06.20 

https://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf
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Anti-Patterns
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Architecture Patterns: Closed-Loop 
Intelligence

● Connect machine learning to 
the user and close the loop

● Clear interactions with implicit 
and direct outputs

● Avoid hidden feedback loops
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Architecture Patterns: Closed-Loop Intelligence

● Runtime for loading and executing models, and providing users with 
the right experiences 

 → Intelligence Runtime

● Coordination between runtime, delivery, monitoring and creation 
 → Intelligence Creation Environment

● Adapt to the changing world 
 → Intelligence Management, Telemetry
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Architecture Patterns: Distinguish Business 
Logic from ML

● Separate business logic and 
inference engine

● Install a gateway before a set of 
applications, services, or 
deployments

● In general: Separation of 
concerns
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Architecture Patterns: Data Lake

● Old architecture: Data 
Warehouse (extract data  → 
transform  load)→ 

● New challenges: understand the 
data first, make choices and 
compromises on which data to 
store and which data to discard

● Think holistically about data 
collection + feature extraction
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Data Lake Architecture Pattern

Based on Conceptual Data Lake Architecture by Pradeep Menon, 2017. Demystifying Data Lake Architecture. 
https://www.datasciencecentral.com/profiles/blogs/demystifying-data-lake-architecture, last access 01.06.20
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Architecture Patterns: Microservices

● Recombinable discrete units

● Before: push-based, manual, 
linear pipelines

● Now, with Microservices: pull-
based, automated, on-demand 
content enrichment cycles
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Architecture Patterns: Parameter-Server 
Abstraction

● Distribute data and workloads 
over worker nodes

● Server nodes maintain globally 
shared parameters (represented 
as vectors and matrices)

● Federated Learning: Device 
downloads the current model, 
improves it by learning from 
data, and sends update to the 
cloud. The update is averaged 
with other user updates to 
improve the shared model 
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Architecture Patterns
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Design Patterns: Test Infrastructure
Independently from ML

● Ensure that infrastructure is 
testable and learning parts are 
encapsulated

● Check statistics in pipeline in 
comparison to statistics for the 
same data processed elsewhere

● Make sure that the model gives 
the same score in training and 
serving environment
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Design Patterns: Common APIs

● Using generic, independent ML 
frameworks results in lots of 
glue code

● Common APIs make supporting 
infrastructure more reusable 
and reduce the cost of changing 
packages
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SE Architectures for ML-enabled systems: 
General Overview
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Where should AI live?

● The location of the AI can affect:
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Places for AI to live
from Geoff Hulton, 2018. Building Intelligent Systems
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Static Intelligence on the Client

● Model updates in low 
frequency via Software 
Updates

 Low Latency in → 
updating

● Low latency in execution

● Cost of operation low

● Offline operation by 
default

● Only applicable for slowly 
changing problems
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Client Side Dynamic

● Low latency in execution

● Potentially high latency in 
updating

● Cost of operation 
distributed between client 
and server

● Offline operation 
unproblematic for some 
amount of time
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Server Centric

● Latency in execution 
increased by 
communication overhead

● Low latency in updating

● Cost of operation fully on 
server (provider)

● Offline operation requires 
to load the model to the 
client
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Backend-Cached

● Low latency in execution, 
only lookup and request 

● Low latency in updating

● Cost of operation based 
on usage volume

● Offline operation requires 
to load the model or parts 
of the cache to the client
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Hybrid (Example)

● Store popular inputs in 
the cache, compute rest 
on client device

● Low latency in updating, 
but only required if server 
is unavailable

● Low latency in execution

● Offline operation 
unproblematic for some 
amount of time

● more complex
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AI Platforms

● Framework that automatically integrates different components of an AI 
system

● Often realized as microservices

● Accessible via API or GUI
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Showcasing an Example
Azure Machine Learning
https://docs.microsoft.com/en-us/azure/machine-learning/overview-what-is-azure-ml

Create a workspace

Upload data to datastore

Allocate hardware resources
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Showcasing an Example 2
Azure Machine Learning
https://docs.microsoft.com/en-us/azure/machine-learning/overview-what-is-azure-ml

Create and submit an experiment

Monitor results
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Showcasing an Example 3
Azure Machine Learning
https://docs.microsoft.com/en-us/azure/machine-learning/overview-what-is-azure-ml

AutoML

Automatic hyperparameter tuning
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More Platforms

● Amazon SageMaker
● Automatic Labeling via ML and Amazon Mechanical 

turk
● Auto ML

● Microsoft Azure ML
● Drag-n-drop interface
● Auto ML

● MLflow
● Open source platform/ no cost
● Does not provide hardware resources 

● Google Cloud AI
● Auto ML
● Many pre-trained models of Vision, Video, NLP etc.



6/10/20  |  FB20  | Reactive Programming & Software Technology  |  Marcel de Boer, Zlatko Kolev  |  40

Organization & Architecture

● Organize Intelligence in a way that supports: 

● High accuracy

● Efficient collaboration

● Lose coupling

● Measureability

● Easy Growth

● Some techniques on the following slides
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Decoupled Feature Engineering

● Each developer works on a different part of the context to create features

● Example: Develop features for classifying Websites

● Problem:

● Features could be redundant
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Context Partitioning

● Partition the data into subsets and create a model for each subset

● Example: Classify websites with different languages

● Problems:

● ML algorithms could instead use the 
partition criteria internally

 → manual partitioning might 
result in lower accuracy
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Model Sequencing/Meta Models

● Develop different Models and pick the most confident prediction/combine 
their predictions 

● Each model has the chance to vote
for the outcome

 

● Problems:

● Meta models can have high accuracy
but are harder to manage

● Model sequencing might trade off 
some accuracy
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Conclusion

● AI Systems architecture needs to consider new challenges that come with the 
characteristics of ML algorithms

● We learned several patters on different levels of abstraction in order to address 
these challenges
● Where to put your model? 
● Architecture patters
● Design patterns

● Currently most patterns are little concrete

● Microservices are one of the most prominent patterns in real world AI 
applications
 

● AI Platforms provide a ready-to-use architecture based on Microservices
 

● Some Architectural patterns support efficient organization of AI development 
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Architectures of AI-enabled Systems

Questions?



6/10/20  |  FB20  | Reactive Programming & Software Technology  |  Marcel de Boer, Zlatko Kolev  |  46

Discussion

Trade-offs between different 
patterns:
e.g. Do Microservices lead to 
more glue code? 
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Discussion

In which cases would you put 
your AI on the client/server?
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Discussion

Have you used any of those 
patterns in your own projects?

If no, what other patterns?
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