
6/10/20 | FB20 | Reactive Programming & Software Technology | Marcel de Boer, Zlatko Kolev | 1

Software Architecture of AI-enabled Systems

Software Engineering for Artificial Intelligence

 Marcel de Boer, Zlatko Kolev

6/10/20 | FB20 | Reactive Programming & Software Technology | Marcel de Boer, Zlatko Kolev | 2

Outline

Motivation & Antipatterns

Architectural Patterns

Design Patterns

Where should AI live?

AI Platforms & Organizing Intelligence

6/10/20 | FB20 | Reactive Programming & Software Technology | Marcel de Boer, Zlatko Kolev | 3

Motivation

● Imagine that you want to implement an app which recommends
products based on a user's activity...

6/10/20 | FB20 | Reactive Programming & Software Technology | Marcel de Boer, Zlatko Kolev | 4

Team A

6/10/20 | FB20 | Reactive Programming & Software Technology | Marcel de Boer, Zlatko Kolev | 5

Team A

What are your thoughts about this architecture?

6/10/20 | FB20 | Reactive Programming & Software Technology | Marcel de Boer, Zlatko Kolev | 6

Team A: Possible Problems

● Data Collection and new data types
 → Pipeline Jungle

● Using third-party ML code
→ Glue Code

● ML on the smartphone
 → Big Ass Script, Experimental Codepaths

6/10/20 | FB20 | Reactive Programming & Software Technology | Marcel de Boer, Zlatko Kolev | 7

Team B

6/10/20 | FB20 | Reactive Programming & Software Technology | Marcel de Boer, Zlatko Kolev | 8

Team B

What are your thoughts about this architecture?

6/10/20 | FB20 | Reactive Programming & Software Technology | Marcel de Boer, Zlatko Kolev | 9

Team B: Possible Problems

● Use different 3rd party ML Models
 → Glue code, Multiple-language smell

● Distributed system
 → Abstraction debt

● Different models might sort the products differently
 → Undeclared consumers

6/10/20 | FB20 | Reactive Programming & Software Technology | Marcel de Boer, Zlatko Kolev | 10

Technical Debt

● Machine Learning doesn't come for free!

● Main challenges

– Entanglement CACE principle→
– Correction Cascades

– Data Dependencies

– Feedback Loops

● Anti-Patterns!

6/10/20 | FB20 | Reactive Programming & Software Technology | Marcel de Boer, Zlatko Kolev | 11

Architectures of AI-enabled Systems

Based on Figure 1 by D. Sculley et al. 2015. Hidden technical debt in Machine learning systems.
https://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf, last access 01.06.20

https://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf

6/10/20 | FB20 | Reactive Programming & Software Technology | Marcel de Boer, Zlatko Kolev | 12

Anti-Patterns

6/10/20 | FB20 | Reactive Programming & Software Technology | Marcel de Boer, Zlatko Kolev | 13

Outline

Motivation & Antipatterns

Architectural Patterns

Design Patterns

Where should AI live?

AI Platforms & Organizing Intelligence

6/10/20 | FB20 | Reactive Programming & Software Technology | Marcel de Boer, Zlatko Kolev | 14

Architecture Patterns: Closed-Loop
Intelligence

● Connect machine learning to
the user and close the loop

● Clear interactions with implicit
and direct outputs

● Avoid hidden feedback loops

6/10/20 | FB20 | Reactive Programming & Software Technology | Marcel de Boer, Zlatko Kolev | 15

Architecture Patterns: Closed-Loop Intelligence

● Runtime for loading and executing models, and providing users with
the right experiences

 → Intelligence Runtime

● Coordination between runtime, delivery, monitoring and creation
 → Intelligence Creation Environment

● Adapt to the changing world
 → Intelligence Management, Telemetry

6/10/20 | FB20 | Reactive Programming & Software Technology | Marcel de Boer, Zlatko Kolev | 16

Architecture Patterns: Distinguish Business
Logic from ML

● Separate business logic and
inference engine

● Install a gateway before a set of
applications, services, or
deployments

● In general: Separation of
concerns

6/10/20 | FB20 | Reactive Programming & Software Technology | Marcel de Boer, Zlatko Kolev | 17

Architecture Patterns: Data Lake

● Old architecture: Data
Warehouse (extract data →
transform load)→

● New challenges: understand the
data first, make choices and
compromises on which data to
store and which data to discard

● Think holistically about data
collection + feature extraction

6/10/20 | FB20 | Reactive Programming & Software Technology | Marcel de Boer, Zlatko Kolev | 18

Data Lake Architecture Pattern

Based on Conceptual Data Lake Architecture by Pradeep Menon, 2017. Demystifying Data Lake Architecture.
https://www.datasciencecentral.com/profiles/blogs/demystifying-data-lake-architecture, last access 01.06.20

6/10/20 | FB20 | Reactive Programming & Software Technology | Marcel de Boer, Zlatko Kolev | 19

Architecture Patterns: Microservices

● Recombinable discrete units

● Before: push-based, manual,
linear pipelines

● Now, with Microservices: pull-
based, automated, on-demand
content enrichment cycles

6/10/20 | FB20 | Reactive Programming & Software Technology | Marcel de Boer, Zlatko Kolev | 20

Architecture Patterns: Parameter-Server
Abstraction

● Distribute data and workloads
over worker nodes

● Server nodes maintain globally
shared parameters (represented
as vectors and matrices)

● Federated Learning: Device
downloads the current model,
improves it by learning from
data, and sends update to the
cloud. The update is averaged
with other user updates to
improve the shared model

6/10/20 | FB20 | Reactive Programming & Software Technology | Marcel de Boer, Zlatko Kolev | 21

Architecture Patterns

6/10/20 | FB20 | Reactive Programming & Software Technology | Marcel de Boer, Zlatko Kolev | 22

Outline

Motivation & Antipatterns

Architectural Patterns

Design Patterns

Where should AI live?

AI Platforms & Organizing Intelligence

6/10/20 | FB20 | Reactive Programming & Software Technology | Marcel de Boer, Zlatko Kolev | 23

Design Patterns: Test Infrastructure
Independently from ML

● Ensure that infrastructure is
testable and learning parts are
encapsulated

● Check statistics in pipeline in
comparison to statistics for the
same data processed elsewhere

● Make sure that the model gives
the same score in training and
serving environment

6/10/20 | FB20 | Reactive Programming & Software Technology | Marcel de Boer, Zlatko Kolev | 24

Design Patterns: Common APIs

● Using generic, independent ML
frameworks results in lots of
glue code

● Common APIs make supporting
infrastructure more reusable
and reduce the cost of changing
packages

6/10/20 | FB20 | Reactive Programming & Software Technology | Marcel de Boer, Zlatko Kolev | 25

SE Architectures for ML-enabled systems:
General Overview

6/10/20 | FB20 | Reactive Programming & Software Technology | Marcel de Boer, Zlatko Kolev | 26

Outline

Motivation & Antipatterns

Architectural Patterns

Design Patterns

Where should AI live?

AI Platforms & Organizing Intelligence

6/10/20 | FB20 | Reactive Programming & Software Technology | Marcel de Boer, Zlatko Kolev | 27

Where should AI live?

● The location of the AI can affect:

6/10/20 | FB20 | Reactive Programming & Software Technology | Marcel de Boer, Zlatko Kolev | 28

Places for AI to live
from Geoff Hulton, 2018. Building Intelligent Systems

6/10/20 | FB20 | Reactive Programming & Software Technology | Marcel de Boer, Zlatko Kolev | 29

Static Intelligence on the Client

● Model updates in low
frequency via Software
Updates

 Low Latency in →
updating

● Low latency in execution

● Cost of operation low

● Offline operation by
default

● Only applicable for slowly
changing problems

6/10/20 | FB20 | Reactive Programming & Software Technology | Marcel de Boer, Zlatko Kolev | 30

Client Side Dynamic

● Low latency in execution

● Potentially high latency in
updating

● Cost of operation
distributed between client
and server

● Offline operation
unproblematic for some
amount of time

6/10/20 | FB20 | Reactive Programming & Software Technology | Marcel de Boer, Zlatko Kolev | 31

Server Centric

● Latency in execution
increased by
communication overhead

● Low latency in updating

● Cost of operation fully on
server (provider)

● Offline operation requires
to load the model to the
client

6/10/20 | FB20 | Reactive Programming & Software Technology | Marcel de Boer, Zlatko Kolev | 32

Backend-Cached

● Low latency in execution,
only lookup and request

● Low latency in updating

● Cost of operation based
on usage volume

● Offline operation requires
to load the model or parts
of the cache to the client

6/10/20 | FB20 | Reactive Programming & Software Technology | Marcel de Boer, Zlatko Kolev | 33

Hybrid (Example)

● Store popular inputs in
the cache, compute rest
on client device

● Low latency in updating,
but only required if server
is unavailable

● Low latency in execution

● Offline operation
unproblematic for some
amount of time

● more complex

6/10/20 | FB20 | Reactive Programming & Software Technology | Marcel de Boer, Zlatko Kolev | 34

Outline

Motivation & Antipatterns

Architectural Patterns

Design Patterns

Where should AI live?

AI Platforms & Organizing Intelligence

6/10/20 | FB20 | Reactive Programming & Software Technology | Marcel de Boer, Zlatko Kolev | 35

AI Platforms

● Framework that automatically integrates different components of an AI
system

● Often realized as microservices

● Accessible via API or GUI

6/10/20 | FB20 | Reactive Programming & Software Technology | Marcel de Boer, Zlatko Kolev | 36

Showcasing an Example
Azure Machine Learning
https://docs.microsoft.com/en-us/azure/machine-learning/overview-what-is-azure-ml

Create a workspace

Upload data to datastore

Allocate hardware resources

6/10/20 | FB20 | Reactive Programming & Software Technology | Marcel de Boer, Zlatko Kolev | 37

Showcasing an Example 2
Azure Machine Learning
https://docs.microsoft.com/en-us/azure/machine-learning/overview-what-is-azure-ml

Create and submit an experiment

Monitor results

6/10/20 | FB20 | Reactive Programming & Software Technology | Marcel de Boer, Zlatko Kolev | 38

Showcasing an Example 3
Azure Machine Learning
https://docs.microsoft.com/en-us/azure/machine-learning/overview-what-is-azure-ml

AutoML

Automatic hyperparameter tuning

6/10/20 | FB20 | Reactive Programming & Software Technology | Marcel de Boer, Zlatko Kolev | 39

More Platforms

● Amazon SageMaker
● Automatic Labeling via ML and Amazon Mechanical

turk
● Auto ML

● Microsoft Azure ML
● Drag-n-drop interface
● Auto ML

● MLflow
● Open source platform/ no cost
● Does not provide hardware resources

● Google Cloud AI
● Auto ML
● Many pre-trained models of Vision, Video, NLP etc.

6/10/20 | FB20 | Reactive Programming & Software Technology | Marcel de Boer, Zlatko Kolev | 40

Organization & Architecture

● Organize Intelligence in a way that supports:

● High accuracy

● Efficient collaboration

● Lose coupling

● Measureability

● Easy Growth

● Some techniques on the following slides

6/10/20 | FB20 | Reactive Programming & Software Technology | Marcel de Boer, Zlatko Kolev | 41

Decoupled Feature Engineering

● Each developer works on a different part of the context to create features

● Example: Develop features for classifying Websites

● Problem:

● Features could be redundant

6/10/20 | FB20 | Reactive Programming & Software Technology | Marcel de Boer, Zlatko Kolev | 42

Context Partitioning

● Partition the data into subsets and create a model for each subset

● Example: Classify websites with different languages

● Problems:

● ML algorithms could instead use the
partition criteria internally

 → manual partitioning might
result in lower accuracy

6/10/20 | FB20 | Reactive Programming & Software Technology | Marcel de Boer, Zlatko Kolev | 43

Model Sequencing/Meta Models

● Develop different Models and pick the most confident prediction/combine
their predictions

● Each model has the chance to vote
for the outcome

● Problems:

● Meta models can have high accuracy
but are harder to manage

● Model sequencing might trade off
some accuracy

6/10/20 | FB20 | Reactive Programming & Software Technology | Marcel de Boer, Zlatko Kolev | 44

Conclusion

● AI Systems architecture needs to consider new challenges that come with the
characteristics of ML algorithms

● We learned several patters on different levels of abstraction in order to address
these challenges
● Where to put your model?
● Architecture patters
● Design patterns

● Currently most patterns are little concrete

● Microservices are one of the most prominent patterns in real world AI
applications

● AI Platforms provide a ready-to-use architecture based on Microservices

● Some Architectural patterns support efficient organization of AI development

6/10/20 | FB20 | Reactive Programming & Software Technology | Marcel de Boer, Zlatko Kolev | 45

Architectures of AI-enabled Systems

Questions?

6/10/20 | FB20 | Reactive Programming & Software Technology | Marcel de Boer, Zlatko Kolev | 46

Discussion

Trade-offs between different
patterns:
e.g. Do Microservices lead to
more glue code?

6/10/20 | FB20 | Reactive Programming & Software Technology | Marcel de Boer, Zlatko Kolev | 47

Discussion

In which cases would you put
your AI on the client/server?

6/10/20 | FB20 | Reactive Programming & Software Technology | Marcel de Boer, Zlatko Kolev | 48

Discussion

Have you used any of those
patterns in your own projects?

If no, what other patterns?

6/10/20 | FB20 | Reactive Programming & Software Technology | Marcel de Boer, Zlatko Kolev | 49

References

● D. Sculley et al. 2015. Hidden technical debt in Machine learning systems.
https://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf,
last access 01.06.20

● H. Washizaki et al. 2019. Studying Software Engineering Patterns for Designing
Machine Learning Systems. https://arxiv.org/abs/1910.04736, last access 26.05.20

● H. Washizaki et al. 2019. Machine Learning Architecture and Design Patterns.
http://www.washi.cs.waseda.ac.jp/wp-content/uploads/2019/12/IEEE_Software_19__ML_Pa
tterns.pdf, last access 01.06.20

● Daniel Smith, 2017. Exploring Development Patterns in Data Science.
https://www.theorylane.com/2017/10/20/some-development-patterns-in-data-science/, last
access 26.05.20

● Pradeep Menon, 2017. Demystifying Data Lake Architecture.
https://www.datasciencecentral.com/profiles/blogs/demystifying-data-lake-architecture, last
access 01.06.20

● B. McMahan and D. Ramage, 2017. Federated Learning: Collaborative Machine
Learning without Centralized Training Data. https://ai.googleblog.com/2017/04/federated-
learning-collaborative.html, last access 26.05.20

https://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf
https://arxiv.org/abs/1910.04736
https://www.theorylane.com/2017/10/20/some-development-patterns-in-data-science/

6/10/20 | FB20 | Reactive Programming & Software Technology | Marcel de Boer, Zlatko Kolev | 50

References

● Mu Li et al. 2014. Scaling Distributed Machine Learning with the Parameter Server.
https://www.cs.cmu.edu/~muli/file/parameter_server_osdi14.pdf, last access 01.06.20

● Md S. Rahman et al. 2019. Machine Learning Software Engineering in Practice: An
Industrial Case Study. https://arxiv.org/abs/1906.07154, last access 01.06.20

● M. Zinkevich, 2019. Rules of Machine Learning: Best Practices for ML Engineering.
https://developers.google.com/machine-learning/guides/rules-of-ml/#your_first_objective,
last access 01.06.20

● Microsoft, 2019. What is Azure Machine Learning?
https://docs.microsoft.com/en-us/azure/machine-learning/overview-what-is-azure-ml

● Geoff Hulton, 2018. Building Intelligent Systems: A Guide to Machine Learning Engineering
Chapter 13 & Chapter 21

● Rahman et al., 2019. Machine Learning Software Engineering in Practice: An Industrial
Case Study

https://developers.google.com/machine-learning/guides/rules-of-ml/#your_first_objective
https://docs.microsoft.com/en-us/azure/machine-learning/overview-what-is-azure-ml

6/10/20 | FB20 | Reactive Programming & Software Technology | Marcel de Boer, Zlatko Kolev | 51

Acknowledgments & License

● All Images are by the authors of these slides

● These slides are made available by the authors (Marcel de Boer, Zlatko Kolev) under
CC BY 4.0

https://creativecommons.org/licenses/by/4.0/legalcode.de

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51

