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Basics and Challenges 

Software Engineering for Artificial Intelligence 
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Outline 

• Intelligent Systems 

• When to Use Intelligent Systems 

• Challenges of Intelligent Systems 

• Good Goals 

• SE Workflow 

• Technical Debt 
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Let‘s talk about Toast 
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Intelligent Systems [2] 

Artificial 

Intelligence 

Objective 
• Meaningful to user 

• Achievable 

Intelligence Creation 
• Through anything from simple 

heuristics to complex ML 

User Intelligent System 

Successful Intelligent Systems have: 

Experience 
• Presents output to the user 

• Minimizes mistakes 

• Must collect feedback 
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Intelligent Experience [2] 

• Achieve system‘s objective 

• Present intelligence to users 

• Balance quality with forcefulness 

• Key actions: automate, prompt, organize and annotate 

• Minimize intelligence flaws 

• Experience can avoid risky decisions 

• Experience can control the number of user interactions 

• Experience can use less forceful actions in risky situations 

• Create data for system growth 

• Experience must know the interaction context, the action taken by 

the user, and the outcome 
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Intelligent Systems [2] 

Experience 
• Presents output to the user 

• Minimizes mistakes 

• Must collect feedback 

Artificial 

Intelligence 

Objective 
• Meaningful to user 

• Achievable 

Intelligence Creation 
• Through anything from simple 

heuristics to complex ML 

User 

Implementation 
• Executing system 

• Includes telemetry and 

feedback 

Intelligent System 

Successful Intelligent Systems have: 

Orchestration 
• Controlling system changes 

• Keep experience in sync with intelligence quality 

• Involves dealing with mistakes, controlling risks 

and defusing abuse 
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Intelligence Implementation [2] 

• Intelligence Runtime: executes the intelligence and gathers the context 

of the interaction 

• Intelligence Management: deploying new versions of the intelligence 

• Monitoring and Telemetry Pipeline: what and how to observe, sample, 

and summarize what is going on 

• Intelligence Creation Environment: intelligence creator must be able to 

recreate runtime context to create accurate intelligence 

• Intelligence Orchestration: controlling the system, i.e., when the 

intelligence evolves, runs into problems 
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Intelligent Systems [2] 

Experience 
• Presents output to the user 

• Minimizes mistakes 

• Must collect feedback 

Artificial 

Intelligence 

Objective 
• Meaningful to user 

• Achievable 

Intelligence Creation 
• Through anything from simple 

heuristics to complex ML 

Orchestration 
• Controlling system changes 
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• Involves dealing with mistakes, controlling risks 
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Implementation 
• Executing system 

• Includes telemetry and 

feedback 

Intelligent System 

Successful Intelligent Systems have: 
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When to Use Intelligent Systems [2] 

Intelligent systems should be only used for complex problems 

• Complex problems: big, open-ended, time-changing or intrinsically hard 

• Requirements for intelligent systems 

• Partial solution must be viable and interesting 

• Usage data must be recordable (to improve the system) 

• Ability to influence meaningful objective 

• Objective should be directly and quickly affectable; taken actions should be 

measurable in the outcome 

• Problem must justify effort 

• Intelligence creation is cheaper than in other methods, but the overhead is very 

expensive 
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Challenges 

General ML Challenges [1] 

• Insufficient Quantity of Training Data 

• Nonrepresentative Training Data 

• Poor-Quality Data 

• Irrelevant Features 

• Overfitting the Training Data 

• Underfitting the Training Data 

ML challenges remain, but the SE challenges of intelligent systems 

are much broader 
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Challenges: Good Goals [2] 

Intelligent System 

Intelligence Experience Outcome +  

Achievable 
Targeted at 

right problem 

Encourages 

correct user 

behavior 
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Abstract goals Very concrete 

 

 organizational objectives leading indicators user outcomes model properties 

Effective goal sets tie usually goals of various types together 

 

Challenges: Good Goals [2] 

• Communicate desired outcome to everyone 

with clear importance and understanding of 

success 

• Are achievable, meaning there is an 

explainable approach and a likely chance of 

success 

• Are measurable, optimizing for non-

measurable goals is impossible 
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SE Workflow [4] 

• Case study at Microsoft: 9 stages ML workflow with big feedback loops 

• Big difference to „traditional software“: Very data centric & more loops 

Model 
Requirmnts 

Data 
Collection 

Data 
Cleaning 

Data 
Labeling 

Feature 
Engineering 

Model 
Training 

Model 
Evaluation 

Model 
Deployment 

Model 
Monitoring 
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SE Workflow: Fundamental Differences [4] 

• SE is about software code, ML is all about data for learning models 

• Software has specifications, datasets usually do not have specifications 

• Specifications change rarely, data schemas may change very frequently 

• No mature tools for data versioning and meta-data management, while for 

code these systems exist 

• Customization and reuse of models is harder than of code 

• Even a slight variation in the usage scenario may require deep changes to 

the model, training data or the executing system 

• Modularity in ML and strict boundaries between models are difficult 

• Models are not easily extensible 

• Models interact in non-obvious ways: model results affect others training 

and tuning processes; isolated development is hard 
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Technical Debt 

• SE is all about making qualified 

decisions based on tradeoffs 

• Sometimes decision are knowingly 

taken, which are good in the short 

run, but will cause more work in 

future: „technical debt“ 

https://www.monkeyuser.com/2018/tech-debt/  

(accessed on 04.05.2020) 

https://www.monkeyuser.com/2018/tech-debt/
https://www.monkeyuser.com/2018/tech-debt/
https://www.monkeyuser.com/2018/tech-debt/
https://www.monkeyuser.com/2018/tech-debt/
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Technical Debt 

https://xkcd.com/2054/ (accessed in 04.05.2020) 

Sources of technical debt are ubiquitous in today‘s ML  
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Hidden Technical Debt in ML Systems [3] 

1. Model Complexity 

• Entanglement: ML mixes many different external 

and internal signales; isolated improvement is 

impossible, wherefore changes are expensive 

• Correction Cascades: For reuse it is tempting to 

add a new tiny AI on top of a existing one, but 

this makes analysis and improvement much 

more expensive 

• Undeclared Consumers: Opening AI results is 

great for re-use, but makes overall progress 

much more expensive 
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Hidden Technical Debt in ML Systems [3] 

2. Data Dependencies 

• Data dependencies cause dependency debt, 

which is hard to detect; code dependencies are 

easily traceable through static analysis 

• Unstable Data Dependencies: Some sources 

might vary in quality and quantity of provided 

data 

• Underutilized Data Dependencies: Some data 

sources might not really be relevant to the 

outcome of the intelligence, however, they still 

increase complexity 
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Hidden Technical Debt in ML Systems [3] 

3. Feedback Loops 

• Intelligent systems offten influence their own 

behavior through feedback loops 

• Causes analysis debt: behavior after release is 

hard to, if it depends on the sexecution 

• Direct Feedback Loops: Explicitly build in loops, 

e.g., for selection of future training data 

• Hidden Feedback Loops: Implicit feedback 

loops, e.g., through reactions of users 

• Example: ML-based stock market agents: 

developed separately, but through shared market 

they influence each other and themselves 
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Hidden Technical Debt in ML Systems [3] 

4. Others 

• Anti-patterns 

• Glue Code: big support code makes the system heavy 

• Pipeline Jungles: special kind of glue code; expensive to test 

• Dead Experimental Codepaths: common source of sudden errors 

• Common Smells 

• Plain-old-data type smell 

• Multiple-language smell: Increases testing complexity and makes 

ownership transition often harder 

• Prototype smell 
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Summary 

• Intelligent systems connect AI and users 

• Objective, intelligence creation, 

implementation, experience, and orchestration 

• Intelligent systems should be only used for 

complex problems 

• Challenges include: 

• Definition of Goals 

• Differences between SE for 4ML and 

traditional SE methods 

• Ubiquitous sources of technical debt in ML 
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Discussion 
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