
05.05.2020 | FB20 | Reactive Programming & Software Technology | 1

Basics and Challenges

Software Engineering for Artificial Intelligence

05.05.2020 | FB20 | Reactive Programming & Software Technology | 2

Outline

• Intelligent Systems

• When to Use Intelligent Systems

• Challenges of Intelligent Systems

• Good Goals

• SE Workflow

• Technical Debt

05.05.2020 | FB20 | Reactive Programming & Software Technology | 3

Let‘s talk about Toast

05.05.2020 | FB20 | Reactive Programming & Software Technology | 4

Intelligent Systems [2]

Artificial

Intelligence

Objective
• Meaningful to user

• Achievable

Intelligence Creation
• Through anything from simple

heuristics to complex ML

User Intelligent System

Successful Intelligent Systems have:

Experience
• Presents output to the user

• Minimizes mistakes

• Must collect feedback

05.05.2020 | FB20 | Reactive Programming & Software Technology | 5

Intelligent Experience [2]

• Achieve system‘s objective

• Present intelligence to users

• Balance quality with forcefulness

• Key actions: automate, prompt, organize and annotate

• Minimize intelligence flaws

• Experience can avoid risky decisions

• Experience can control the number of user interactions

• Experience can use less forceful actions in risky situations

• Create data for system growth

• Experience must know the interaction context, the action taken by

the user, and the outcome

05.05.2020 | FB20 | Reactive Programming & Software Technology | 6

Intelligent Systems [2]

Experience
• Presents output to the user

• Minimizes mistakes

• Must collect feedback

Artificial

Intelligence

Objective
• Meaningful to user

• Achievable

Intelligence Creation
• Through anything from simple

heuristics to complex ML

User

Implementation
• Executing system

• Includes telemetry and

feedback

Intelligent System

Successful Intelligent Systems have:

Orchestration
• Controlling system changes

• Keep experience in sync with intelligence quality

• Involves dealing with mistakes, controlling risks

and defusing abuse

05.05.2020 | FB20 | Reactive Programming & Software Technology | 7

Intelligence Implementation [2]

• Intelligence Runtime: executes the intelligence and gathers the context

of the interaction

• Intelligence Management: deploying new versions of the intelligence

• Monitoring and Telemetry Pipeline: what and how to observe, sample,

and summarize what is going on

• Intelligence Creation Environment: intelligence creator must be able to

recreate runtime context to create accurate intelligence

• Intelligence Orchestration: controlling the system, i.e., when the

intelligence evolves, runs into problems

05.05.2020 | FB20 | Reactive Programming & Software Technology | 8

Intelligent Systems [2]

Experience
• Presents output to the user

• Minimizes mistakes

• Must collect feedback

Artificial

Intelligence

Objective
• Meaningful to user

• Achievable

Intelligence Creation
• Through anything from simple

heuristics to complex ML

Orchestration
• Controlling system changes

• Keep experience in sync with intelligence quality

• Involves dealing with mistakes, controlling risks

and defusing abuse

User

Implementation
• Executing system

• Includes telemetry and

feedback

Intelligent System

Successful Intelligent Systems have:

05.05.2020 | FB20 | Reactive Programming & Software Technology | 9

When to Use Intelligent Systems [2]

Intelligent systems should be only used for complex problems

• Complex problems: big, open-ended, time-changing or intrinsically hard

• Requirements for intelligent systems

• Partial solution must be viable and interesting

• Usage data must be recordable (to improve the system)

• Ability to influence meaningful objective

• Objective should be directly and quickly affectable; taken actions should be

measurable in the outcome

• Problem must justify effort

• Intelligence creation is cheaper than in other methods, but the overhead is very

expensive

05.05.2020 | FB20 | Reactive Programming & Software Technology | 10

Challenges

General ML Challenges [1]

• Insufficient Quantity of Training Data

• Nonrepresentative Training Data

• Poor-Quality Data

• Irrelevant Features

• Overfitting the Training Data

• Underfitting the Training Data

ML challenges remain, but the SE challenges of intelligent systems

are much broader

05.05.2020 | FB20 | Reactive Programming & Software Technology | 11

Challenges: Good Goals [2]

Intelligent System

Intelligence Experience Outcome +

Achievable
Targeted at

right problem

Encourages

correct user

behavior

05.05.2020 | FB20 | Reactive Programming & Software Technology | 12

Abstract goals Very concrete

 organizational objectives leading indicators user outcomes model properties

Effective goal sets tie usually goals of various types together

Challenges: Good Goals [2]

• Communicate desired outcome to everyone

with clear importance and understanding of

success

• Are achievable, meaning there is an

explainable approach and a likely chance of

success

• Are measurable, optimizing for non-

measurable goals is impossible

05.05.2020 | FB20 | Reactive Programming & Software Technology | 13

SE Workflow [4]

• Case study at Microsoft: 9 stages ML workflow with big feedback loops

• Big difference to „traditional software“: Very data centric & more loops

Model
Requirmnts

Data
Collection

Data
Cleaning

Data
Labeling

Feature
Engineering

Model
Training

Model
Evaluation

Model
Deployment

Model
Monitoring

05.05.2020 | FB20 | Reactive Programming & Software Technology | 14

SE Workflow: Fundamental Differences [4]

• SE is about software code, ML is all about data for learning models

• Software has specifications, datasets usually do not have specifications

• Specifications change rarely, data schemas may change very frequently

• No mature tools for data versioning and meta-data management, while for

code these systems exist

• Customization and reuse of models is harder than of code

• Even a slight variation in the usage scenario may require deep changes to

the model, training data or the executing system

• Modularity in ML and strict boundaries between models are difficult

• Models are not easily extensible

• Models interact in non-obvious ways: model results affect others training

and tuning processes; isolated development is hard

05.05.2020 | FB20 | Reactive Programming & Software Technology | 15

Technical Debt

• SE is all about making qualified

decisions based on tradeoffs

• Sometimes decision are knowingly

taken, which are good in the short

run, but will cause more work in

future: „technical debt“

https://www.monkeyuser.com/2018/tech-debt/

(accessed on 04.05.2020)

https://www.monkeyuser.com/2018/tech-debt/
https://www.monkeyuser.com/2018/tech-debt/
https://www.monkeyuser.com/2018/tech-debt/
https://www.monkeyuser.com/2018/tech-debt/

05.05.2020 | FB20 | Reactive Programming & Software Technology | 16

Technical Debt

https://xkcd.com/2054/ (accessed in 04.05.2020)

Sources of technical debt are ubiquitous in today‘s ML

05.05.2020 | FB20 | Reactive Programming & Software Technology | 17

Hidden Technical Debt in ML Systems [3]

1. Model Complexity

• Entanglement: ML mixes many different external

and internal signales; isolated improvement is

impossible, wherefore changes are expensive

• Correction Cascades: For reuse it is tempting to

add a new tiny AI on top of a existing one, but

this makes analysis and improvement much

more expensive

• Undeclared Consumers: Opening AI results is

great for re-use, but makes overall progress

much more expensive

05.05.2020 | FB20 | Reactive Programming & Software Technology | 18

Hidden Technical Debt in ML Systems [3]

2. Data Dependencies

• Data dependencies cause dependency debt,

which is hard to detect; code dependencies are

easily traceable through static analysis

• Unstable Data Dependencies: Some sources

might vary in quality and quantity of provided

data

• Underutilized Data Dependencies: Some data

sources might not really be relevant to the

outcome of the intelligence, however, they still

increase complexity

05.05.2020 | FB20 | Reactive Programming & Software Technology | 19

Hidden Technical Debt in ML Systems [3]

3. Feedback Loops

• Intelligent systems offten influence their own

behavior through feedback loops

• Causes analysis debt: behavior after release is

hard to, if it depends on the sexecution

• Direct Feedback Loops: Explicitly build in loops,

e.g., for selection of future training data

• Hidden Feedback Loops: Implicit feedback

loops, e.g., through reactions of users

• Example: ML-based stock market agents:

developed separately, but through shared market

they influence each other and themselves

05.05.2020 | FB20 | Reactive Programming & Software Technology | 20

Hidden Technical Debt in ML Systems [3]

4. Others

• Anti-patterns

• Glue Code: big support code makes the system heavy

• Pipeline Jungles: special kind of glue code; expensive to test

• Dead Experimental Codepaths: common source of sudden errors

• Common Smells

• Plain-old-data type smell

• Multiple-language smell: Increases testing complexity and makes

ownership transition often harder

• Prototype smell

05.05.2020 | FB20 | Reactive Programming & Software Technology | 21

Summary

• Intelligent systems connect AI and users

• Objective, intelligence creation,

implementation, experience, and orchestration

• Intelligent systems should be only used for

complex problems

• Challenges include:

• Definition of Goals

• Differences between SE for 4ML and

traditional SE methods

• Ubiquitous sources of technical debt in ML

05.05.2020 | FB20 | Reactive Programming & Software Technology | 22

Literature

• [1] Géron, Aurélien. Hands-on machine learning with Scikit-Learn, Keras, and

TensorFlow: Concepts, Tools, and Techniques to Build Intelligent

Systems. 2nd edition. O’Reilly. 2019.

https://ebookcentral.proquest.com/lib/ulbdarmstadt/detail.action?docID=5892320

• [2] Chapter 1, 2, 4, 5 and 11 of Hulten, Geoff. Building Intelligent Systems: A Guide to

Machine Learning Engineering. Apress. 2018.

https://hds.hebis.de/ulbda/Record/HEB461642786

• [3] Sculley, David, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Dietmar Ebner, Vinay

Chaudhary, Michael Young, Jean-Francois Crespo, and Dan Dennison. Hidden Technical Debt

in Machine Learning Systems. In Proceedings of the 28th International Conference on

Neural Information Processing Systems - Volume 2, pp. 2503 - 2511. 2015.

http://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf

• [4] Amershi, Saleema, Andrew Begel, Christian Bird, Robert DeLine, Harald Gall, Ece Kamar,

Nachiappan Nagappan, Besmira Nushi, and Thomas Zimmermann. Software Engineering for

Machine Learning: A Case Study. In 2019 IEEE/ACM 41st International Conference on

Software Engineering: Software Engineering in Practice (ICSE-SEIP), pp. 291-300. 2019.

https://ieeexplore.ieee.org/document/8804457

https://ebookcentral.proquest.com/lib/ulbdarmstadt/detail.action?docID=5892320
https://ebookcentral.proquest.com/lib/ulbdarmstadt/detail.action?docID=5892320
https://hds.hebis.de/ulbda/Record/HEB461642786
https://hds.hebis.de/ulbda/Record/HEB461642786
https://hds.hebis.de/ulbda/Record/HEB461642786
http://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf
http://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf
http://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf
http://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf
http://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf
http://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf
http://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf
http://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf
http://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf
http://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf
http://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf
http://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf
http://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf
http://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf
http://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf
http://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf
http://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf
https://ieeexplore.ieee.org/document/8804457
https://ieeexplore.ieee.org/document/8804457

05.05.2020 | FB20 | Reactive Programming & Software Technology | 23

Discussion

05.05.2020 | FB20 | Reactive Programming & Software Technology | 24

Acknowledgements & License

• Material Design Icons, by Google under Apache-2.0

• Other images are either by the authors of these slides, attributed where

they are used, or licensed under Pixabay or Pexels

• These slides are made available by the authors (Daniel Sokolowski,

Guido Salvaneschi) under CC BY 4.0

https://www.apache.org/licenses/LICENSE-2.0.html
https://www.apache.org/licenses/LICENSE-2.0.html
https://www.apache.org/licenses/LICENSE-2.0.html
https://pixabay.com/de/service/license/
https://www.pexels.com/de-de/lizenz/
https://creativecommons.org/licenses/by/4.0/legalcode.de

