Software Engineering for Artificial Intelligence

TECHNISCHE UNIVERSITÄT DARMSTADT

Introduction

21.04.2020 | FB20 | Reactive Programming & Software Technology | 1

Attendance via Zoom

- Let's try to make this a great experience for all of us:
- Please check your setup before the meeting. We start all calls 10 minutes early, where you can do so.
- () Please connect before the meeting starts.
- Please join using your full name. If you use a nickname or pseudonym, tell the advisors (needed for grading).

- We encourage you to use a microphone and a camera: It improves the overall experience in interactive parts.
- Please mute your microphone when not speaking

Agenda

- Motivation
- This Seminar
- Seminar Structure & Grading
- Schedule
- Topics & Registration

Advisors & Contact

Any questions, suggestions, interested in research or collaborations? Talk to us or drop a mail!

Motivation

Imagine: We build together *AcaWhooo!* a "Google Translate" for scientific text.

21.04.2020 | FB20 | Reactive Programming & Software Technology | 5

From Data Science to Production

- A data scientist can build our program, but...
 - They are used to fixed datasets and focus heavily on accuracy.
 - They prototype, often using Jupyter notebooks, etc.
 - They are experts in modeling and feature egineering, but stability, size, updateability and other aspects, which are important in production, do mostly not matter.
- A software engineer is focused on production grade software
 - Concerned about **many different kinds of product quality**: performance, security, safety, stability, release time, cost, customer satisfaction, maintainability, reliability, scalability, fault tolerance, ...
- Both worlds need to be brought together!

Δ

Inductive R.

TECHNISCHE UNIVFRSITÄT

DARMSTADT

Overall goals

Best effort

Practice tells different!

- Specifications are often vague, weak, ambiguous, ...
- Correctness proves rarely performed
- \rightarrow SE developed suitable methods

In this Seminar

- We learn about state-of-the-art software engineering for intelligent systems.
- We learn about ongoing research regarding SE for intelligent systems.
- We discuss current methods and recent ideas.
- Moreover, you can improve your scientific reading, presenting and discussion skills.

Resources for this Course

- Books
 - Especially: Hulten, Geoff. <u>Building</u>
 <u>Intelligent Systems</u>: A Guide to Machine
 Learning Engineering. Apress, 2018
- Research Papers
- Blogs
- Great overview compiled by Christian Kästner (CMU):
 - <u>https://github.com/ckaestne/seaibib</u>

Seminar Structure

This is an interactive format: everyone becomes the expert in one topic, teaches it to all others, and we discuss it together

- Each meeting covers 2 topics
 - Being presented first
 - Then followed by Q&A and a discussion
- 1 week before each meeting we publish a introductory reading material list (webpage)
 - Please read it for preparation

Typical Meeting

Seminar Structure

This is an interactive format: everyone becomes the expert in one topic, teaches it to all others, and we discuss it together

- We provide a list of materials for the start
- You extend this list with suitable resources
- You prepare a 25-30 mins presentation
- You prepare for a 15-20 mins discussion on the topic
- For your class mates, you prepare a short list of introductory reading material (~1 h reading time ~= 10 pages)

Due 7 days before your presentation slot; mail it to: sokolowski@cs.tudarmstadt.de

Presented the assigned

meeting slot

Grading

- Introductory reading material list (20 %)
 - Did it prepare well for your presentation and the discussion?
 - Did it take roughly 1 hour to read all suggested resources?
- **Presentation** (60 %)
 - Used resources, presented slides and the talk: Was the topic well introduced, explained, and did you provide interesting insights?
- **Discussion guidance** (10 %)
 - Apart from Q&A, could you offer questions leading to discussions?
 - Did it have clear directions and involve the class mates?
- General discussion participation (10 %)
 - Did you regularly ask questions or add to the discussion?

Schedule

Topics

Foundation Topics

- Choosing AI Techniques
- Software Architecture of Al-enabled Systems
- Requirements and Risks (Quality Assurance)

Specialization Topics

- Model Quality & Metamorphic Testing
- Data Quality Assurance
- Surveys on ML Testing
- A/B Testing

- Debugging
- Data Provenance, Reproducability
- Computational Notebooks

Registration

- Send a mail by April 26th to sokolowski@cs.tu-darmstadt.de
- Include ordered list of 3 topics
- At least one of your choices must be a "Foundation Topic"
- We assign the topics based on your mails by May 5th
- (Do not forget to register in TUCaN as well)

Next time (May 5th): Example Meeting

- First presentation and discussion on the topic "Basics and Challenges"
 - Introduces our seminar topic
 - Gives you an example on what you shall prepare
 - After the discussion, we can clarify your questions on what we expect from you to make the grading transparent
- Do not forget to read the introductory reading material
 - It will be published on the webpage by April 28th

Question & Answers

Acknowledgements & License

- Material Design Icons, by Google under <u>Apache-2.0</u>
- Other images are either by the authors of these slides, attributed where they are used, or licensed under <u>Pixabay</u> or <u>Pexels</u>
- These slides are made available by the authors (Daniel Sokolowski, Guido Salvaneschi) under <u>CC BY 4.0</u>